Related Articles

Related Articles

Exponential Distribution in R Programming – dexp(), pexp(), qexp(), and rexp() Functions
  • Last Updated : 08 Jul, 2020

The exponential distribution in R Language is the probability distribution of the time between events in a Poisson point process, i.e., a process in which events occur continuously and independently at a constant average rate. It is a particular case of the gamma distribution.

In R, there are 4 built-in functions to generate exponential distribution:

  • dexp()
    dexp(x_dexp, rate) 
  • pexp()
    pexp(x_pexp, rate )
  • qexp()
    qexp(x_qexp, rate)
  • rexp()
    rexp(N, rate )

where,

x: represents x-values for exp function .
rate: represents the shapex.
N: Specify sample size

Functions To Generate Exponential Distribution

dexp() Function

dexp() function returns the corresponding values of the exponential density for an input vector of quantiles.



Syntax:

dexp(x_dexp, rate)

Example:

filter_none

edit
close

play_arrow

link
brightness_4
code

# R program to illustrate
# exponential distribution
# Specify x-values
x_dexp <- seq(1, 10, by = 0.1
       
# Apply dexp() function               
y_dexp <- dexp(x_dexp, rate = 5)    
                 
# Plot dexp values 
plot(y_dexp)

chevron_right


Output:

pexp() Function

pexp() function returns the corresponding values of the exponential cumulative distribution function for an input vector of quantiles.

Syntax:

pexp(x_pexp, rate )

Example:

filter_none

edit
close

play_arrow

link
brightness_4
code

# R program to illustrate
# exponential distribution
  
# Specify x-values
x_pexp <- seq(1, 10, by = 0.2)                                     
  
# Apply pexp() function
y_pexp <- pexp(x_pexp, rate = 1
  
# Plot values                  
plot(y_pexp)                                                    

chevron_right


Output :

qexp() Function

qexp() function gives the possibility, we can use the qexp function to return the corresponding values of the quantile function.



Syntax:

qexp(x_qexp, rate)

Example:

filter_none

edit
close

play_arrow

link
brightness_4
code

# R program to illustrate
# exponential distribution
  
# Specify x-values 
x_qexp <- seq(0, 1, by = 0.2)                     
   
# Apply qexp() function
y_qexp <- qexp(x_qexp, rate = 1)
   
# Plot values                   
plot(y_qexp)                                       

chevron_right


Output:

rexp() Function

rexp() function is used to simulate a set of random numbers drawn from the exponential distribution.

Syntax:

rexp(N, rate )

Example:

filter_none

edit
close

play_arrow

link
brightness_4
code

# R program to illustrate
# exponential distribution
  
# Set seed for reproducibility
set.seed(500
  
# Specify size         
N <- 100
  
# Draw exp distributed values
y_rexp <- rexp(N, rate = 1)
   
# Plot exp density  
hist(y_rexp, breaks = 50, main = "")

chevron_right


Output :

My Personal Notes arrow_drop_up
Recommended Articles
Page :