Skip to content
Related Articles

Related Articles

Improve Article

Errorbar graph in Python using Matplotlib

  • Last Updated : 21 Apr, 2020

Error bars function used as graphical enhancement that visualizes the variability of the plotted data on a Cartesian graph. Error bars can be applied to graphs to provide an additional layer of detail on the presented data. As you can see in below graphs.
Errorbar graph in Python using Matplotlib
Errorbar graph in Python using Matplotlib

Error bars help you indicate estimated error or uncertainty to give a general sense of how precise a measurement is this is done through the use of markers drawn over the original graph and its data points. To visualize this information error bars work by drawing lines that extend from the center of the plotted data point or edge with bar charts the length of an error bar helps to reveal uncertainty of a data point as shown in the below graph. A short error bar shows that values are concentrated signaling that the plotted averaged value is more likely while a long error bar would indicate that the values are more spread out and less reliable. also depending on the type of data. the length of each pair of error bars tends to be of equal length on both sides, however, if the data is skewed then the lengths on each side would be unbalanced.

Errorbar graph in Python using Matplotlib

Error bars always run parallel to a quantity of scale axis so they can be displayed either vertically or horizontally depending on whether the quantitative scale is on the y-axis or x-axis if there are two quantity of scales and two pairs of arrow bars can be used for both axes.
Errorbar graph in Python using Matplotlib

Let see an example of errorbar how it works.



Creating a Simple Graph.




# importing matplotlib 
import matplotlib.pyplot as plt
  
# making a simple plot
x =[1, 2, 3, 4, 5, 6, 7]
y =[1, 2, 1, 2, 1, 2, 1]
  
# ploting graph
plt.plot(x, y)

Output:
Errorbar graph in Python using Matplotlib

Example 1: Adding Some error in y value.




# importing matplotlib
import matplotlib.pyplot as plt 
  
  
# making a simple plot
x =[1, 2, 3, 4, 5, 6, 7]
y =[1, 2, 1, 2, 1, 2, 1]
  
# creating error
y_error = 0.2
  
# ploting graph
plt.plot(x, y)
  
plt.errorbar(x, y,
             yerr = y_error,
             fmt ='o')

Output:
Errorbar graph in Python using Matplotlib

Example 2: Adding Some error in x value.




# importing matplotlib
import matplotlib.pyplot as plt 
  
# making a simple plot
x =[1, 2, 3, 4, 5, 6, 7]
y =[1, 2, 1, 2, 1, 2, 1]
  
# creating error
x_error = 0.5
  
# ploting graph
plt.plot(x, y)
plt.errorbar(x, y,
             xerr = x_error,
             fmt ='o')

Output:
Errorbar graph in Python using Matplotlib

Example 3: Adding error in x & y




# importing matplotlib
import matplotlib.pyplot as plt 
  
  
# making a simple plot
x =[1, 2, 3, 4, 5, 6, 7]
y =[1, 2, 1, 2, 1, 2, 1]
  
# creating error
x_error = 0.5
y_error = 0.3
  
# ploting graph
plt.plot(x, y)
plt.errorbar(x, y, 
             yerr = y_error, 
             xerr = x_error, 
             fmt ='o')

Output:
Errorbar graph in Python using Matplotlib

Example 4: Adding variable error in x and y




# importing matplotlib 
import matplotlib.pyplot as plt
  
  
# making a simple plot
x =[1, 2, 3, 4, 5]
y =[1, 2, 1, 2, 1]
  
# creating error
y_errormin =[0.1, 0.5, 0.9,
             0.1, 0.9]
y_errormax =[0.2, 0.4, 0.6
             0.4, 0.2]
  
x_error = 0.5
y_error =[y_errormin, y_errormax]
  
# ploting graph
# plt.plot(x, y)
plt.errorbar(x, y,
             yerr = y_error,
             xerr = x_error, 
             fmt ='o')

Output:
Errorbar graph in Python using Matplotlib

Example 5:




# import require modules 
import numpy as np
import matplotlib.pyplot as plt
  
  
# defining our function 
x = np.arange(10)/10 
y = (x + 0.1)**2
  
# defing our error 
y_error = np.linspace(0.05, 0.2, 10)
  
# ploting our function and 
# error bar
plt.plot(x, y)
  
plt.errorbar(x, y, yerr = y_error, fmt ='o')

Output:
Errorbar graph in Python using Matplotlib

 Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.  

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course. And to begin with your Machine Learning Journey, join the Machine Learning – Basic Level Course




My Personal Notes arrow_drop_up
Recommended Articles
Page :