Skip to content
Related Articles

Related Articles

Equation of circle when three points on the circle are given
  • Difficulty Level : Expert
  • Last Updated : 27 Apr, 2021

Given three coordinates that lie on a circle, (x1, y1), (x2, y2), and (x3, y3). The task is to find the equation of the circle and then print the center and the radius of the circle. 
Equation of circle in general form is x² + y² + 2gx + 2fy + c = 0 and in radius form is (x – h)² + (y -k)² = r², where (h, k) is the center of the circle and r is the radius.
Examples: 
 

Input: x1 = 1, y1 = 0, x2 = -1, y2 = 0, x3 = 0, y3 = 1 
Output: 
Centre = (0, 0) 
Radius = 1 
The equation of the circle is x2 + y2 = 1.
Input: x1 = 1, y1 = -6, x2 = 2, y2 = 1, x3 = 5, y3 = 2 
Output: 
Centre = (5, -3) 
Radius = 5 
Equation of the circle is x2 + y2 -10x + 6y + 9 = 0 
 

 

Approach: As we know all three-point lie on the circle, so they will satisfy the equation of a circle and by putting them in the general equation we get three equations with three variables g, f, and c, and by further solving we can get the values. We can derive the formula to obtain the value of g, f, and c as: 
 

Putting coordinates in eqn of circle, we get: 
x12 + y12 + 2gx1 + 2fy1 + c = 0 – (1) 
x22 + y22 + 2gx2 + 2fy2 + c = 0 – (2) 
x32 + y32 + 2gx3 + 2fy3 + c = 0 – (3)
From (1) we get, 2gx1 = -x12 – y12 – 2fy1 – c – (4) 
From (1) we get, c = -x12 – y12 – 2gx1 – 2fy1 – (5) 
From (3) we get, 2fy3 = -x32 – y32 – 2gx3 – c – (6)
Subtracting eqn (2) from eqn (1) we get
2g( x1 – x2 ) = ( x22 -x12 ) + ( y22 – y12 ) + 2f( y2 – y1 ) – (A)
Now putting eqn (5) in (6) we get
2fy3 = -x32 – y32 – 2gx3 + x12 + y12 + 2gx1 + 2fy1 – (7)
Now putting value of 2g from eqn (A) in (7) we get
2f = ( ( x12 – x32 )( x1 – x2 ) +( y12 – y32 )( x1 – x2 ) + ( x22 – x12 )( x1 – x3 ) + ( y22 – y12 )( x1 – x3 ) ) / ( y3 – y1 )( x1 – x2 ) – ( y2 – y1 )( x1 – x3 )
Similarly we can obtain the values of 2g : 
2g = ( ( x12 – x32 )( y1 – x2 ) +( y12 – y32 )( y1 – y2 ) + ( x22 – x12 )( y1 – y3) + ( y22 – y12 )( y1 – y3 ) ) / ( y3 -y1 )( y1 – y2 ) – ( x2 – x1 )( y1 – y3 )
Putting 2g and 2f in eqn (5) we get the value of c and know we had the equation of circle as x2 + y2 + 2gx + 2fy + c = 0 
 



Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function to find the circle on
// which the given three points lie
void findCircle(int x1, int y1, int x2, int y2, int x3, int y3)
{
    int x12 = x1 - x2;
    int x13 = x1 - x3;
 
    int y12 = y1 - y2;
    int y13 = y1 - y3;
 
    int y31 = y3 - y1;
    int y21 = y2 - y1;
 
    int x31 = x3 - x1;
    int x21 = x2 - x1;
 
    // x1^2 - x3^2
    int sx13 = pow(x1, 2) - pow(x3, 2);
 
    // y1^2 - y3^2
    int sy13 = pow(y1, 2) - pow(y3, 2);
 
    int sx21 = pow(x2, 2) - pow(x1, 2);
    int sy21 = pow(y2, 2) - pow(y1, 2);
 
    int f = ((sx13) * (x12)
             + (sy13) * (x12)
             + (sx21) * (x13)
             + (sy21) * (x13))
            / (2 * ((y31) * (x12) - (y21) * (x13)));
    int g = ((sx13) * (y12)
             + (sy13) * (y12)
             + (sx21) * (y13)
             + (sy21) * (y13))
            / (2 * ((x31) * (y12) - (x21) * (y13)));
 
    int c = -pow(x1, 2) - pow(y1, 2) - 2 * g * x1 - 2 * f * y1;
 
    // eqn of circle be x^2 + y^2 + 2*g*x + 2*f*y + c = 0
    // where centre is (h = -g, k = -f) and radius r
    // as r^2 = h^2 + k^2 - c
    int h = -g;
    int k = -f;
    int sqr_of_r = h * h + k * k - c;
 
    // r is the radius
    float r = sqrt(sqr_of_r);
 
    cout << "Centre = (" << h << ", " << k << ")" << endl;
    cout << "Radius = " << r;
}
 
// Driver code
int main()
{
    int x1 = 1, y1 = 1;
    int x2 = 2, y2 = 4;
    int x3 = 5, y3 = 3;
    findCircle(x1, y1, x2, y2, x3, y3);
 
    return 0;
}

Java




// Java implementation of the approach
import java.text.*;
 
class GFG
{
     
// Function to find the circle on
// which the given three points lie
static void findCircle(int x1, int y1,
                        int x2, int y2,
                        int x3, int y3)
{
    int x12 = x1 - x2;
    int x13 = x1 - x3;
 
    int y12 = y1 - y2;
    int y13 = y1 - y3;
 
    int y31 = y3 - y1;
    int y21 = y2 - y1;
 
    int x31 = x3 - x1;
    int x21 = x2 - x1;
 
    // x1^2 - x3^2
    int sx13 = (int)(Math.pow(x1, 2) -
                    Math.pow(x3, 2));
 
    // y1^2 - y3^2
    int sy13 = (int)(Math.pow(y1, 2) -
                    Math.pow(y3, 2));
 
    int sx21 = (int)(Math.pow(x2, 2) -
                    Math.pow(x1, 2));
                     
    int sy21 = (int)(Math.pow(y2, 2) -
                    Math.pow(y1, 2));
 
    int f = ((sx13) * (x12)
            + (sy13) * (x12)
            + (sx21) * (x13)
            + (sy21) * (x13))
            / (2 * ((y31) * (x12) - (y21) * (x13)));
    int g = ((sx13) * (y12)
            + (sy13) * (y12)
            + (sx21) * (y13)
            + (sy21) * (y13))
            / (2 * ((x31) * (y12) - (x21) * (y13)));
 
    int c = -(int)Math.pow(x1, 2) - (int)Math.pow(y1, 2) -
                                2 * g * x1 - 2 * f * y1;
 
    // eqn of circle be x^2 + y^2 + 2*g*x + 2*f*y + c = 0
    // where centre is (h = -g, k = -f) and radius r
    // as r^2 = h^2 + k^2 - c
    int h = -g;
    int k = -f;
    int sqr_of_r = h * h + k * k - c;
 
    // r is the radius
    double r = Math.sqrt(sqr_of_r);
    DecimalFormat df = new DecimalFormat("#.#####");
    System.out.println("Centre = (" + h + "," + k + ")");
    System.out.println("Radius = " + df.format(r));
}
 
// Driver code
public static void main (String[] args)
{
    int x1 = 1, y1 = 1;
    int x2 = 2, y2 = 4;
    int x3 = 5, y3 = 3;
    findCircle(x1, y1, x2, y2, x3, y3);
}
}
 
// This code is contributed by chandan_jnu

Python3




# Python3 implementation of the approach
from math import sqrt
 
# Function to find the circle on
# which the given three points lie
def findCircle(x1, y1, x2, y2, x3, y3) :
    x12 = x1 - x2;
    x13 = x1 - x3;
 
    y12 = y1 - y2;
    y13 = y1 - y3;
 
    y31 = y3 - y1;
    y21 = y2 - y1;
 
    x31 = x3 - x1;
    x21 = x2 - x1;
 
    # x1^2 - x3^2
    sx13 = pow(x1, 2) - pow(x3, 2);
 
    # y1^2 - y3^2
    sy13 = pow(y1, 2) - pow(y3, 2);
 
    sx21 = pow(x2, 2) - pow(x1, 2);
    sy21 = pow(y2, 2) - pow(y1, 2);
 
    f = (((sx13) * (x12) + (sy13) *
          (x12) + (sx21) * (x13) +
          (sy21) * (x13)) // (2 *
          ((y31) * (x12) - (y21) * (x13))));
             
    g = (((sx13) * (y12) + (sy13) * (y12) +
          (sx21) * (y13) + (sy21) * (y13)) //
          (2 * ((x31) * (y12) - (x21) * (y13))));
 
    c = (-pow(x1, 2) - pow(y1, 2) -
         2 * g * x1 - 2 * f * y1);
 
    # eqn of circle be x^2 + y^2 + 2*g*x + 2*f*y + c = 0
    # where centre is (h = -g, k = -f) and
    # radius r as r^2 = h^2 + k^2 - c
    h = -g;
    k = -f;
    sqr_of_r = h * h + k * k - c;
 
    # r is the radius
    r = round(sqrt(sqr_of_r), 5);
 
    print("Centre = (", h, ", ", k, ")");
    print("Radius = ", r);
 
# Driver code
if __name__ == "__main__" :
     
    x1 = 1 ; y1 = 1;
    x2 = 2 ; y2 = 4;
    x3 = 5 ; y3 = 3;
    findCircle(x1, y1, x2, y2, x3, y3);
 
# This code is contributed by Ryuga

C#




// C# implementation of the approach
using System;
 
class GFG
{
     
// Function to find the circle on
// which the given three points lie
static void findCircle(int x1, int y1,
                        int x2, int y2,
                        int x3, int y3)
{
    int x12 = x1 - x2;
    int x13 = x1 - x3;
 
    int y12 = y1 - y2;
    int y13 = y1 - y3;
 
    int y31 = y3 - y1;
    int y21 = y2 - y1;
 
    int x31 = x3 - x1;
    int x21 = x2 - x1;
 
    // x1^2 - x3^2
    int sx13 = (int)(Math.Pow(x1, 2) -
                    Math.Pow(x3, 2));
 
    // y1^2 - y3^2
    int sy13 = (int)(Math.Pow(y1, 2) -
                    Math.Pow(y3, 2));
 
    int sx21 = (int)(Math.Pow(x2, 2) -
                    Math.Pow(x1, 2));
                     
    int sy21 = (int)(Math.Pow(y2, 2) -
                    Math.Pow(y1, 2));
 
    int f = ((sx13) * (x12)
            + (sy13) * (x12)
            + (sx21) * (x13)
            + (sy21) * (x13))
            / (2 * ((y31) * (x12) - (y21) * (x13)));
    int g = ((sx13) * (y12)
            + (sy13) * (y12)
            + (sx21) * (y13)
            + (sy21) * (y13))
            / (2 * ((x31) * (y12) - (x21) * (y13)));
 
    int c = -(int)Math.Pow(x1, 2) - (int)Math.Pow(y1, 2) -
                                2 * g * x1 - 2 * f * y1;
 
    // eqn of circle be x^2 + y^2 + 2*g*x + 2*f*y + c = 0
    // where centre is (h = -g, k = -f) and radius r
    // as r^2 = h^2 + k^2 - c
    int h = -g;
    int k = -f;
    int sqr_of_r = h * h + k * k - c;
 
    // r is the radius
    double r = Math.Round(Math.Sqrt(sqr_of_r), 5);
 
    Console.WriteLine("Centre = (" + h + "," + k + ")");
    Console.WriteLine("Radius = " + r);
}
 
// Driver code
static void Main()
{
    int x1 = 1, y1 = 1;
    int x2 = 2, y2 = 4;
    int x3 = 5, y3 = 3;
    findCircle(x1, y1, x2, y2, x3, y3);
}
}
 
// This code is contributed by chandan_jnu

Javascript




<script>
 
// Function to find the circle on
// which the given three points lie
function findCircle(x1,  y1,  x2,  y2, x3, y3)
{
    var x12 = (x1 - x2);
    var x13 = (x1 - x3);
 
    var y12 =( y1 - y2);
    var y13 = (y1 - y3);
 
    var y31 = (y3 - y1);
    var y21 = (y2 - y1);
 
    var x31 = (x3 - x1);
    var x21 = (x2 - x1);
 
    //x1^2 - x3^2
    var sx13 = Math.pow(x1, 2) - Math.pow(x3, 2);
 
    // y1^2 - y3^2
    var sy13 = Math.pow(y1, 2) - Math.pow(y3, 2);
 
    var sx21 = Math.pow(x2, 2) - Math.pow(x1, 2);
    var sy21 = Math.pow(y2, 2) - Math.pow(y1, 2);
 
    var f = ((sx13) * (x12)
            + (sy13) * (x12)
            + (sx21) * (x13)
            + (sy21) * (x13))
            / (2 * ((y31) * (x12) - (y21) * (x13)));
    var g = ((sx13) * (y12)
            + (sy13) * (y12)
            + (sx21) * (y13)
            + (sy21) * (y13))
            / (2 * ((x31) * (y12) - (x21) * (y13)));
 
    var c = -(Math.pow(x1, 2)) -
    Math.pow(y1, 2) - 2 * g * x1 - 2 * f * y1;
 
    // eqn of circle be
    // x^2 + y^2 + 2*g*x + 2*f*y + c = 0
    // where centre is (h = -g, k = -f) and radius r
    // as r^2 = h^2 + k^2 - c
    var h = -g;
    var k = -f;
    var sqr_of_r = h * h + k * k - c;
 
    // r is the radius
    var r = Math.sqrt(sqr_of_r);
 
    document.write("Centre = (" + h + ", "+ k +")" + "<br>");
    document.write( "Radius = " + r.toFixed(5));
}
 
var x1 = 1, y1 = 1;
    var x2 = 2, y2 = 4;
    var x3 = 5, y3 = 3;
    findCircle(x1, y1, x2, y2, x3, y3);
 
 
</script>
Output: 
Centre = (3, 2)
Radius = 2.23607

 

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :