Equal sum array partition excluding a given element

Given an array arr[] and an index in it. Find whether the array arr[] can be partitioned into two disjoint sets such that sum of both the sets is equal and none of the sets includes arr[index]

Examples :

Input : arr[] = {2, 1, 3, 4}, 
        index = 2
Output : No
We need to exclude arr[2] which is 3.
Possible sets are : 
Set 1: (2, 1), Set 2: 4, sum = 3≠4
Set 1: 2, Set 2: (4, 1), sum = 2≠5
Set 1: 1, Set 2: (4, 2), sum = 1≠6
Neither of the sums are equal.

Input : arr[] = {2, 5, 1, 4, 0}, 
         index = 4
Output : Yes
Set 1 : (2, 4), sum = 6
Set 2 : (5, 1), sum = 6

Approach: This problem is a variation of partition problem with an additional constraint that index cannot be included in neither of the partitioned sets of array.
First find sum S of array excluding the index-th element. If the sum is even then array can be partitioned otherwise not. If the sum is even then define two variables set1Sum and set2Sum to store the sum of two sets.
It can be determined recursively that whether set1Sum is equal to set2Sum. Start from position 0 and traverse the array recursively. At every array position, there are two choices: either include current array element in set 1 or in set 2. Recursively call for both the conditions, by including current element in set 1 first then in set 2. If current position is the index to be excluded then recursively call for next position without updating any sum. When entire array is traversed then check for equality of both sets sum. If the sums are equal then result is found otherwise backtrack and check for other possibilities.



Implementation:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to determine whether an array can be
// partitioned into two equal sum sets when an index
// is always excluded from both sets.
#include <bits/stdc++.h>
using namespace std;
  
// Utility function to partition array into two sets
// and check whether sum of both sets are equal or not.
bool isSubsetSumPoss(int arr[], int n, int set1Sum,
                    int set2Sum, int index, int pos)
{
  
    // If the entire array is traversed, then check
    // whether sum of both the sets are equal or not.
    if (pos == n) 
        return (set1Sum == set2Sum);
  
    // If current position is the index to be excluded
    // then call the function for next position without
    // updating any sum.
    if (pos == index)
        isSubsetSumPoss(arr, n, set1Sum,
                 set2Sum, index, pos + 1);
  
    // Each element can be included either in
    // set 1 or in set 2. Call function for 
    // both the cases.
    return isSubsetSumPoss(arr, n, set1Sum + arr[pos],
                           set2Sum, index, pos + 1)
           || isSubsetSumPoss(arr, n, set1Sum, set2Sum + 
                           arr[pos], index, pos + 1);
}
  
// Function that calls the main utility 
// function and returns whether array can 
// be partitioned into two sets or not.
bool canPartition(int arr[], int n, int index)
{
  
    // Calculate sum of entire array 
    // excluding position index.
    int sum = 0;
  
    for (int i = 0; i < n; i++) {
        if (i == index) 
            continue;        
        sum += arr[i];
    }
  
    // If sum is not even then array 
    // cannot be partitioned into two
    // equal sum sets.
    if (sum % 2 != 0) 
        return false;    
  
    // If sum is even call utility function.
    return isSubsetSumPoss(arr, n, 0, 0,
                              index, 0);
}
  
int main()
{
    int arr[] = { 2, 5, 1, 4, 0 };
    int index = 4;
    int n = sizeof(arr) / sizeof(arr[0]);
  
    if (canPartition(arr, n, index)) 
        cout << "Yes";    
    else 
        cout << "No";    
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to determine whether an array 
// can be partitioned into two equal sum 
// sets when an index is always excluded
// from both sets.
import java.io.*;
import java.util.*;
  
public class GFG {
       
    // Utility function to partition array 
    // into two sets and check whether sum
    // of both sets are equal or not.
    static boolean isSubsetSumPoss(int []arr, 
          int n, int set1Sum, int set2Sum,
                       int index, int pos)
    {
       
        // If the entire array is traversed,
        // then check whether sum of both 
        // the sets are equal or not.
        if (pos == n) 
            return (set1Sum == set2Sum);
       
        // If current position is the index
        // to be excluded then call the 
        // function for next position without
        // updating any sum.
        if (pos == index)
            isSubsetSumPoss(arr, n, set1Sum,
                    set2Sum, index, pos + 1);
       
        // Each element can be included 
        // either in set 1 or in set 2. 
        // Call function for both the cases.
        return isSubsetSumPoss(arr, n, set1Sum
           + arr[pos], set2Sum, index, pos + 1)
            || isSubsetSumPoss(arr, n, set1Sum,
           set2Sum + arr[pos], index, pos + 1);
    }
       
    // Function that calls the main utility 
    // function and returns whether array can 
    // be partitioned into two sets or not.
    static boolean canPartition(int []arr, int n,
                                    int index)
    {
       
        // Calculate sum of entire array 
        // excluding position index.
        int sum = 0;
       
        for (int i = 0; i < n; i++) {
            if (i == index) 
                continue;     
            sum += arr[i];
        }
       
        // If sum is not even then array 
        // cannot be partitioned into two
        // equal sum sets.
        if (sum % 2 != 0
            return false
       
        // If sum is even call utility function.
        return isSubsetSumPoss(arr, n, 0, 0,
                                index, 0);
    }
       
    // Driver code
    public static void main(String args[])
    {
        int []arr = { 2, 5, 1, 4, 0 };
        int index = 4;
        int n = arr.length;
       
        if (canPartition(arr, n, index)) 
            System.out.print("Yes"); 
        else
            System.out.print("No"); 
    }
}
   
// This code is contributed by Manish Shaw
// (manishshaw1)

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 program to determine whether an array can be
# partitioned into two equal sum sets when an index
# is always excluded from both sets.
  
# Utility function to partition array into two sets
# and check whether sum of both sets are equal or not.
def isSubsetSumPoss(arr, n, set1Sum, set2Sum, index, pos) :
  
    # If the entire array is traversed, then check
    # whether sum of both the sets are equal or not.
    if (pos == n) :
        return (set1Sum == set2Sum)
  
    # If current position is the index to be excluded
    # then call the function for next position without
    # updating any sum.
    if (pos == index) :
        isSubsetSumPoss(arr, n, set1Sum, set2Sum,
                                     index, pos + 1)
  
    # Each element can be included either in
    # set 1 or in set 2. Call function for 
    # both the cases.
    return (isSubsetSumPoss(arr, n, set1Sum + arr[pos],
                               set2Sum, index, pos + 1
                    or isSubsetSumPoss(arr, n, set1Sum, 
                   set2Sum + arr[pos], index, pos + 1))
  
# Function that calls the main utility 
# function and returns whether array can 
# be partitioned into two sets or not.
def canPartition(arr, n, index) : 
      
    # Calculate sum of entire array 
    # excluding position index.
    sum = 0
  
    for i in range (0, n) :
        if (i == index) :
            continue    
        sum += arr[i]
  
    # If sum is not even then array 
    # cannot be partitioned into two
    # equal sum sets.
    if (sum % 2 != 0) :
        return false 
  
    # If sum is even call utility function.
    return isSubsetSumPoss(arr, n, 0, 0, index, 0)
  
# Driver Code
arr = [ 2, 5, 1, 4, 0 ]
index = 4
n = len(arr)
  
if (canPartition(arr, n, index)) :
    print ("Yes"
else :
    print ("No"
      
# This code is contributed by Manish Shaw
# (manishshaw1)

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to determine whether an array 
// can be partitioned into two equal sum 
// sets when an index is always excluded
// from both sets.
using System;
using System.Collections.Generic;
using System.Linq;
using System.Collections;
  
class GFG {
      
    // Utility function to partition array 
    // into two sets and check whether sum
    // of both sets are equal or not.
    static bool isSubsetSumPoss(int []arr, 
          int n, int set1Sum, int set2Sum,
                       int index, int pos)
    {
      
        // If the entire array is traversed,
        // then check whether sum of both 
        // the sets are equal or not.
        if (pos == n) 
            return (set1Sum == set2Sum);
      
        // If current position is the index
        // to be excluded then call the 
        // function for next position without
        // updating any sum.
        if (pos == index)
            isSubsetSumPoss(arr, n, set1Sum,
                    set2Sum, index, pos + 1);
      
        // Each element can be included 
        // either in set 1 or in set 2. 
        // Call function for both the cases.
        return isSubsetSumPoss(arr, n, set1Sum
           + arr[pos], set2Sum, index, pos + 1)
            || isSubsetSumPoss(arr, n, set1Sum,
           set2Sum + arr[pos], index, pos + 1);
    }
      
    // Function that calls the main utility 
    // function and returns whether array can 
    // be partitioned into two sets or not.
    static bool canPartition(int []arr, int n,
                                    int index)
    {
      
        // Calculate sum of entire array 
        // excluding position index.
        int sum = 0;
      
        for (int i = 0; i < n; i++) {
            if (i == index) 
                continue;     
            sum += arr[i];
        }
      
        // If sum is not even then array 
        // cannot be partitioned into two
        // equal sum sets.
        if (sum % 2 != 0) 
            return false
      
        // If sum is even call utility function.
        return isSubsetSumPoss(arr, n, 0, 0,
                                index, 0);
    }
      
    // Driver code
    public static void Main()
    {
        int []arr = { 2, 5, 1, 4, 0 };
        int index = 4;
        int n = arr.Length;
      
        if (canPartition(arr, n, index)) 
            Console.Write("Yes"); 
        else
            Console.Write("No"); 
    }
}
  
// This code is contributed by Manish Shaw
// (manishshaw1)

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP program to determine whether 
// an array can be partitioned into 
// two equal sum sets when an index 
// is always excluded from both sets.
  
// Utility function to partition array 
// into two sets and check whether sum 
// of both sets are equal or not.
function isSubsetSumPoss($arr, $n, $set1Sum
                         $set2Sum, $index, $pos)
{
  
    // If the entire array is traversed, 
    // then check whether sum of both
    // the sets are equal or not.
    if ($pos == $n
        return ($set1Sum == $set2Sum);
  
    // If current position is the index 
    // to be excluded then call the 
    // function for next position without 
    // updating any sum.
    if ($pos == $index)
        isSubsetSumPoss($arr, $n, $set1Sum,
                        $set2Sum, $index,
                        $pos + 1);
  
    // Each element can be included 
    // either in set 1 or in set 2. 
    // Call function for both the cases.
    return isSubsetSumPoss($arr, $n, $set1Sum
                           $arr[$pos], $set2Sum
                           $index, $pos + 1) || 
           isSubsetSumPoss($arr, $n, $set1Sum
                           $set2Sum + $arr[$pos], 
                           $index, $pos + 1);
}
  
// Function that calls the main utility 
// function and returns whether array can 
// be partitioned into two sets or not.
function canPartition($arr, $n, $index)
{
  
    // Calculate sum of entire array 
    // excluding position index.
    $sum = 0;
  
    for ($i = 0; $i < $n; $i++) 
    {
        if ($i == $index
            continue;     
        $sum += $arr[$i];
    }
  
    // If sum is not even then array 
    // cannot be partitioned into two
    // equal sum sets.
    if ($sum % 2 != 0) 
        return false; 
  
    // If sum is even call
    // utility function.
    return isSubsetSumPoss($arr, $n, 0, 
                           0, $index, 0);
}
  
// Driver Code
$arr = array( 2, 5, 1, 4, 0 );
$index = 4;
$n = count($arr);
  
if (canPartition($arr, $n, $index)) 
    echo ("Yes"); 
else
    echo ("No"); 
      
// This code is contributed by 
// Manish Shaw (manishshaw1)
?>

chevron_right


Output :

Yes

Time Complexity : Exponential O(2^n)
Exercise : Try to solve this problem iteratively.



My Personal Notes arrow_drop_up

A Programmer and A Machine learning Enthusiast

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : manishshaw1



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.