Enlarge a Matrix such that each element occurs in R rows and C columns

Given a matrix arr[][] of size N x M, and two numbers R and C, the task is to enlarge this matrix such that each element of the original matrix occurs in R rows and C columns in the enlarged matrix.

Examples: 

Input: arr[][] = {{1, 2, 3}, {4, 5, 6}} R = 3, C = 2 
Output: 
1 1 2 2 3 3 4 4 5 5 6 6 
1 1 2 2 3 3 4 4 5 5 6 6 
1 1 2 2 3 3 4 4 5 5 6 6 
Explanation: 
Every element of the original matrix appears in 3 rows and 2 columns in the enlarged matrix.

Input: arr = {{1, 2}}, R = 2, C = 3 
Output: 
1 1 1 2 2 2 
1 1 1 2 2 2 
Explanation: 
Each element of the original matrix appears in 2 rows and 3 columns in the enlarged matrix. 

Approach: This problem can be solved by keeping either the number of rows or columns fixed. In this article, the number of rows is fixed. Therefore, for any matrix of dimension N x M, the number of rows in the final answer would be R. 
The idea is to first convert the given matrix into a one dimensional array (i.e) flatten the given matrix. Now, for every element in the flattened matrix, append the values in R rows and C columns of the final enlarged matrix. 



Below is the implementation of the above approach:  

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to enlarge a matrix
// such that each element occurs in
// R rows and C columns
#include <bits/stdc++.h>
using namespace std;
 
// Function to convert the matrix
// into a 1-D array
vector<int> oneD(vector<vector<int>> &matrix){
      
    // Variable to store the
    // given matrix
    vector<int> m;
  
    // Iterating through all the
    // elements of the matrix
    for(int i = 0; i < matrix.size(); ++i)
        for(int j = 0; j < matrix[0].size(); ++j)
            // Adding the element into the
            // defined matrix
            m.push_back(matrix[i][j]);
  
    return m;
}
  
// Function to enlarge a matrix
// such that each element occurs
// in R rows and C columns
vector<vector<int>> dimensions(int R, int C, vector<int> matrix) {
      
    // Initializing the enlarged
    // matrix
    vector<vector<int>> ans(R+1);
 
    // Variables to iterate over
    // the matrix
    int ctr = 0;
    int r = 0;
      
    while(ctr < matrix.size()) {
  
        // To keep the rows in the
        // range [0, R]
        r = r % R;
        int c = 0;
        while(c < C) {            
            // In order to fix the number
            // of columns, the above r
            // statement can be commented 
            // and this can be uncommented
            // c = c % C
               for(int i = 0; i < R; ++i)
                   ans[i].push_back(matrix[ctr]);
                
               c += 1;
          }
        ctr += 1;
        r += 1;
    }
 
    return ans;
}
     
// Driver code
int main() {
 
    vector<vector<int>> arr = {{1, 2}, {3, 4}};
    int R = 2, C = 3;
  
    vector<vector<int>> ans = dimensions(R, C, oneD(arr));
      
    // Print the enlarged matrix
    for(int i = 0; i < ans.size(); ++i) {
     
        for(int j = 0; j < ans[i].size(); ++j) {
            cout << ans[i][j] << " ";
        }
     
        cout<<endl;
    }
 
    return 0;
}
 
// This code is contributed by Sanjit_Prasad
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java program to enlarge a matrix
// such that each element occurs in
// R rows and C columns
import java.io.*;
import java.util.*;
 
class GFG{
 
// Function to convert the matrix
// into a 1-D array
static ArrayList<Integer>oneD(
    ArrayList<ArrayList<Integer>> matrix)
{
     
    // Variable to store the
    // given matrix
    ArrayList<Integer> m = new ArrayList<Integer>();
 
    // Iterating through all the
    // elements of the matrix
    for(int i = 0; i < matrix.size(); ++i)
        for(int j = 0; j < matrix.get(0).size(); ++j)
         
            // Adding the element into the
            // defined matrix
            m.add(matrix.get(i).get(j));
 
    return m;
}
 
// Function to enlarge a matrix
// such that each element occurs
// in R rows and C columns
static ArrayList<ArrayList<Integer>>dimensions(
    int R, int C, ArrayList<Integer> matrix)
{
     
    // Initializing the enlarged
    // matrix
    ArrayList<ArrayList<Integer>> ans = new ArrayList<>();
    for(int i = 0; i < R; ++i)
    {
        ans.add(new ArrayList<Integer>());
    }
 
    // Variables to iterate over
    // the matrix
    int ctr = 0;
    int r = 0;
 
    while (ctr < matrix.size())
    {
         
        // To keep the rows in the
        // range [0, R]
        r = r % R;
        int c = 0;
         
        while (c < C)
        {
             
            // In order to fix the number
            // of columns, the above r
            // statement can be commented
            // and this can be uncommented
            // c = c % C
            for(int i = 0; i < R; ++i)
            {
                ans.get(i).add(matrix.get(ctr));
            }
            c += 1;
        }
        ctr += 1;
        r += 1;
    }
    return ans;
}
 
// Driver code
public static void main(String[] args)
{
 
    ArrayList<ArrayList<Integer>> arr = new ArrayList<>();
    arr.add(new ArrayList<Integer>(Arrays.asList(1, 2)));
    arr.add(new ArrayList<Integer>(Arrays.asList(3, 4)));
    int R = 2, C = 3;
 
    ArrayList<ArrayList<Integer>> ans = new ArrayList<>(
        dimensions(R, C, oneD(arr)));
 
    // Print the enlarged matrix
    for(int i = 0; i < ans.size(); ++i)
    {
        System.out.print("[");
        for(int j = 0; j < ans.get(i).size(); ++j)
        {
            System.out.print(ans.get(i).get(j) + ", ");
        }
        System.out.print("]\n");
    }
}
}
 
// This code is contributed by akhilsaini
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python program to enlarge a matrix
# such that each element occurs in
# R rows and C columns
 
# Function to convert the matrix
# into a 1-D array
def oneD(matrix):
     
    # Variable to store the
    # given matrix
    m = []
 
    # Iterating through all the
    # elements of the matrix
    for i in range(len(matrix)):
        for j in range(len(matrix[0])):
 
            # Adding the element into the
            # defined matrix
            m.append(matrix[i][j])
 
    return m[:]
 
# Function to enlarge a matrix
# such that each element occurs
# in R rows and C columns
def dimensions(R, C, matrix):
     
    # Initializing the enlarged
    # matrix
    ans = [[]] * R
     
    # Variables to iterate over
    # the matrix
    ctr = 0
    r = 0
 
     
    while(ctr < len(matrix)):
 
        # To keep the rows in the
        # range [0, R]
        r = r % R
        c = 0
        while(c < C):
             
            # In order to fix the number
            # of columns, the above r
            # statement can be commented 
            # and this can be uncommented
            # c = c % C
            ans[r].append(matrix[ctr])
             
            c+= 1
      
        ctr += 1
        r+= 1
         
         
    return ans
 
# Driver code
if __name__ == '__main__':
 
    arr = [[1, 2], [3, 4]]
    R, C = 2, 3
 
    ans = dimensions(R, C, oneD(arr))
     
    # Print the enlarged matrix
    for i in ans:
        print(i)
chevron_right

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# program to enlarge a matrix
// such that each element occurs in
// R rows and C columns
using System;
using System.Collections;
using System.Collections.Generic;
 
class GFG{
 
// Function to convert the matrix
// into a 1-D array
static List<int> oneD(List<List<int> > matrix)
{
     
    // Variable to store the
    // given matrix
    List<int> m = new List<int>();
 
    // Iterating through all the
    // elements of the matrix
    for(int i = 0; i < matrix.Count; ++i)
        for(int j = 0; j < matrix[0].Count; ++j)
         
            // Adding the element into the
            // defined matrix
            m.Add(matrix[i][j]);
 
    return m;
}
 
// Function to enlarge a matrix
// such that each element occurs
// in R rows and C columns
static List<List<int>> dimensions(int R, int C,
                                  List<int> matrix)
{
     
    // Initializing the enlarged
    // matrix
    List<List<int> > ans = new List<List<int> >();
    for(int i = 0; i < R; ++i)
    {
        ans.Add(new List<int>());
    }
 
    // Variables to iterate over
    // the matrix
    int ctr = 0;
    int r = 0;
 
    while (ctr < matrix.Count)
    {
         
        // To keep the rows in the
        // range [0, R]
        r = r % R;
        int c = 0;
         
        while (c < C)
        {
             
            // In order to fix the number
            // of columns, the above r
            // statement can be commented
            // and this can be uncommented
            // c = c % C
            for(int i = 0; i < R; ++i)
            {
                ans[i].Add(matrix[ctr]);
            }
            c += 1;
        }
        ctr += 1;
        r += 1;
    }
    return ans;
}
 
// Driver code
public static void Main()
{
 
    List<List<int>> arr = new List<List<int>>();
    arr.Add(new List<int>() { 1, 2 });
    arr.Add(new List<int>() { 3, 4 });
    int R = 2, C = 3;
 
    List<List<int>> ans = new List<List<int>>(
        dimensions(R, C, oneD(arr)));
 
    // Print the enlarged matrix
    for(int i = 0; i < ans.Count; ++i)
    {
        Console.Write("[");
        for(int j = 0; j < ans[i].Count; ++j)
        {
            Console.Write(ans[i][j] + ", ");
        }
        Console.Write("]\n");
    }
}
}
 
// This code is contributed by akhilsaini
chevron_right

Output: 
[1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]
[1, 1, 1, 2, 2, 2, 3, 3, 3, 4, 4, 4]


 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.





Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : Sanjit_Prasad, akhilsaini

Article Tags :
Practice Tags :