Skip to content
Related Articles

Related Articles

Improve Article

Encrypt the given string with the following operations

  • Difficulty Level : Medium
  • Last Updated : 10 Jun, 2021

Given a string s, the task is to encrypt the string in the following way: 

  1. If the frequency of current character is even, then increment current character by x.
  2. If the frequency of current character is odd, then decrement current character by x.

Note: All the operations are circular that is adding 1 to ‘z’ will give ‘a’ and subtracting 1 from ‘a’ will give ‘z’

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Examples:



Input :s=”abcda”, x=3 
Output :dyzad 
‘a’ appear 2 times in the string, hence incrementing ‘a’ by 3 becomes ‘d’ 
‘b’ appear 1 times in the string, hence decrementing ‘b’ by 3 becomes ‘y’ 
‘c’ appear 1 times in the string, hence decrementing ‘c’ by 3 becomes ‘z’ 
‘d’ appear 1 times in the string, hence decrementing ‘d’ by 3 becomes ‘a’ 
‘a’ appear 2 times in the string, hence incrementing ‘a’ by 3 becomes ‘d’ 
Hence the string becomes “dyzad”

Input :s=”aabbc”, x=5 
Output :ffggx 
 

Approach: 

  • Create a frequency array to store the frequency of each character .
  • Traverse the given string and for every character if its frequency is even, then increment it by x else if the frequency is odd decrement it by x.

Below is the implementation of the above approach:

C++




// C++ implementation of the above approach:
#include <bits/stdc++.h>
#define MAX 26
using namespace std;
 
// Function to return the encrypted string
string encryptStr(string str, int n, int x)
{
     
    // Reduce x because rotation of
    // length 26 is unnecessary
    x = x % MAX;
     
    // Calculate the frequency of characters
    int freq[MAX] = {0};
     
    for(int i = 0; i < n; i++)
    {
        freq[str[i] - 'a']++;
    }
     
    for(int i = 0; i < n; i++)
    {
         
        // If the frequency of current character
        // is even then increment it by x
        if (freq[str[i] - 'a'] % 2 == 0)
        {
            int pos = (str[i] - 'a' + x) % MAX;
            str[i] = (char)(pos + 'a');
        }
         
        // Else decrement it by x
        else
        {
            int pos = (str[i] - 'a' - x);
             
            if (pos < 0)
            {
                pos += MAX;
            }
             
            str[i] = (char)(pos + 'a');
        }
    }
     
    // Return the count
    return str;
}
 
// Driver code
int main()
{
    string s = "abcda";
    int n = s.size();
    int x = 3;
     
    cout << encryptStr(s, n, x) << endl;
     
    return 0;
}
 
// This code is contributed by avanitrachhadiya2155

Java




// Java implementation of the above approach:
public class GFG {
 
    static final int MAX = 26;
 
    // Function to return the encrypted string
    static String encryptStr(String str, int n, int x)
    {
 
        // Reduce x because rotation of
        // length 26 is unnecessary
        x = x % MAX;
        char arr[] = str.toCharArray();
 
        // calculate the frequency of characters
        int freq[] = new int[MAX];
        for (int i = 0; i < n; i++)
            freq[arr[i] - 'a']++;
 
        for (int i = 0; i < n; i++) {
 
            // If the frequency of current character
            // is even then increment it by x
            if (freq[arr[i] - 'a'] % 2 == 0) {
                int pos = (arr[i] - 'a' + x) % MAX;
                arr[i] = (char)(pos + 'a');
            }
 
            // Else decrement it by x
            else {
                int pos = (arr[i] - 'a' - x);
                if (pos < 0)
                    pos += MAX;
                arr[i] = (char)(pos + 'a');
            }
        }
 
        // Return the count
        return String.valueOf(arr);
    }
 
    // Driver code
    public static void main(String[] args)
    {
        String s = "abcda";
        int n = s.length();
        int x = 3;
        System.out.println(encryptStr(s, n, x));
    }
}

Python3




# Python3 implementation of the above approach:
MAX = 26
 
# Function to return the encrypted string
def encryptstrr(strr, n, x):
     
    # Reduce x because rotation of
    # length 26 is unnecessary
    x = x % MAX
    arr = list(strr)
     
    # calculate the frequency of characters
    freq = [0]*MAX
    for i in range(n):
        freq[ord(arr[i]) - ord('a')] += 1
     
    for i in range(n):
         
        # If the frequency of current character
        # is even then increment it by x
        if (freq[ord(arr[i]) - ord('a')] % 2 == 0):
            pos = (ord(arr[i]) - ord('a') + x) % MAX
            arr[i] = chr(pos + ord('a'))
         
        # Else decrement it by x
        else:
            pos = (ord(arr[i]) - ord('a') - x)
            if (pos < 0):
                pos += MAX
            arr[i] = chr(pos + ord('a'))
             
    # Return the count
    return "".join(arr)
 
 
# Driver code
s = "abcda"
n = len(s)
x = 3
print(encryptstrr(s, n, x))
 
# This code is contributed by
# shubhamsingh10

C#




// C# implementation of the above approach:
using System;
 
class GFG
{
 
    static int MAX = 26;
 
    // Function to return the encrypted string
    public static char[] encryptStr(String str,
                                    int n, int x)
    {
 
        // Reduce x because rotation of
        // length 26 is unnecessary
        x = x % MAX;
        char[] arr = str.ToCharArray();
 
        // calculate the frequency of characters
        int[] freq = new int[MAX];
        for (int i = 0; i < n; i++)
            freq[arr[i] - 'a']++;
 
        for (int i = 0; i < n; i++)
        {
 
            // If the frequency of current character
            // is even then increment it by x
            if (freq[arr[i] - 'a'] % 2 == 0)
            {
                int pos = (arr[i] - 'a' + x) % MAX;
                arr[i] = (char)(pos + 'a');
            }
 
            // Else decrement it by x
            else
            {
                int pos = (arr[i] - 'a' - x);
                if (pos < 0)
                    pos += MAX;
                arr[i] = (char)(pos + 'a');
            }
        }
 
        // Return the count
        return arr;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        String s = "abcda";
        int n = s.Length;
        int x = 3;
        Console.WriteLine(encryptStr(s, n, x));
    }
}
 
// This code is contributed by
// sanjeev2552

Javascript




<script>
// Javascript implementation of the above approach:
var MAX = 26;
 
// Function to return the encrypted string
function encryptStr(str, n, x)
{
     
    // Reduce x because rotation of
    // length 26 is unnecessary
    x = x % MAX;
     
    // Calculate the frequency of characters
    var freq = Array(MAX).fill(0);
     
    for(var i = 0; i < n; i++)
    {
        freq[str[i].charCodeAt(0) - 'a'.charCodeAt(0)]++;
    }
     
    for(var i = 0; i < n; i++)
    {
         
        // If the frequency of current character
        // is even then increment it by x
        if (freq[str[i].charCodeAt(0) - 'a'.charCodeAt(0)] % 2 == 0)
        {
            var pos = (str[i].charCodeAt(0) - 'a'.charCodeAt(0) + x) % MAX;
            str[i] = String.fromCharCode(pos + 'a'.charCodeAt(0));
        }
         
        // Else decrement it by x
        else
        {
            var pos = (str[i].charCodeAt(0) - 'a'.charCodeAt(0) - x);
             
            if (pos < 0)
            {
                pos += MAX;
            }
             
            str[i] = String.fromCharCode(pos + 'a'.charCodeAt(0));
        }
    }
     
    // Return the count
    return str.join('');
}
 
// Driver code
var s = "abcda";
var n = s.length;
var x = 3;
 
document.write( encryptStr(s.split(''), n, x));
 
</script>
Output: 
dyzad

 

Time Complexity: O(N)
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :