Eigenspace and Eigenspectrum Values in a Matrix


For a given matrix A the set of all eigenvectors of A associated with an eigenvalue spans a subspace, which is called the Eigenspace of A with respect to and is denoted by . The set of all eigenvalues of A is called Eigenspectrum, or just spectrum, of A.
If is an eigenvalue of A, then the corresponding eigenspace is the solution space of the homogeneous system of linear equations . Geometrically, the eigenvector corresponding to a non – zero eigenvalue points in a direction that is stretched by the linear mapping. The eigenvalue is the factor by which it is stretched. If the eigenvalue is negative, then the direction of the stretching is flipped.

Below are some useful properties of eigenvalues and eigenvectors in addition to the properties which are already listed in the article Mathematics | Eigen Values and Eigen Vectors.

  • A matrix A and its transpose possess the same eigenvalues but not necessarily the same eigenvectors.
  • The eigenspace is the null space of since
  • Note: ker stands for Kernel which is another name for null space.

    Computing Eigenvalues, Eigenvectors, and Eigenspaces:

    Consider given 2 X 2 matrix:
    Step 1: Characteristic polynomial and Eigenvalues.
    The characteristic polynomial is given by 
    After we factorize the characteristic polynomial, we will get
    which gives eigenvalues as  and Step 2: Eigenvectors and Eigenspaces
    We find the eigenvectors that correspond to these eigenvalues by looking 
    at vectors x such that 
    For  we obtain
    After solving the above homogeneous system of equations,
    we will obtain a solution space
    This eigenspace is one dimensional as it possesses a single basis vector.
    Similarly, we find eigenvector for  by solving
    the homogeneous system of equations
    This means any vector , where  
    such as  is an eigenvector with 
    eigenvalue 2. This means eigenspace is given as 

    The two eigenspaces and in the above example are one dimensional as they are each spanned by a single vector. However, in other cases, we may have multiple identical eigenvectors and the eigenspaces may have more than one dimension.

    Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

    Recommended Posts:

    Possess good Mathematical and Statistical Foundation Data Science Enthusiast Addicted to Python

    If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

    Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

    Article Tags :