# Efficient search in an array where difference between adjacent is 1

Given an array of n integers. Each array element is obtained by adding either +1 or -1 to previous element i.e absolute difference between any two consecutive elements is 1. The task is to search an element index with the minimum number of comparison (less than simple element by element search). If the element is present multiple time, then print the smallest index. If the element is not present print -1.

Examples:

```Input : arr[] = {5, 4, 5, 6, 5, 4, 3, 2}
x = 4.
Output : 1
The first occurrence of element x is at
index 1.

Input : arr[] = { 5, 4, 5, 6, 4, 3, 2, 3 }
x = 9.
Output : -1
Element x is not present in arr[]
```

## Recommended: Please try your approach on {IDE} first, before moving on to the solution.

Let element to be search is x. At any index i, if arr[i] != x, the possibility of x to be present is at location i + abs(arr[i] – a), since each element is obtained by adding either +1 or -1 to the previous element. There is no possibility of having el between i and i + abs(arr[i] – a). So directly jump to i + abs(arr[i] – a), if arr[i] != x.

```Algorithm to solve the problem:
1. Start from index = 0.
2. Compare arr[index] and x.
a) If both are equal, return index.
b) If not, set index = index + abs(arr[index] - x).
3. Repeat step 2.
```

Below is the implementation of above idea :

## C++

 `// C++ program to search an element in an array ` `// where each element is obtained by adding ` `// either +1 or -1 to previous element. ` `#include ` `using` `namespace` `std; ` ` `  `// Return the index of the element to be searched. ` `int` `search(``int` `arr[], ``int` `n, ``int` `x) ` `{ ` `    ``// Searching x in arr[0..n-1] ` `    ``int` `i = 0; ` `    ``while` `(i <= n-1) ` `    ``{ ` `        ``// Checking if element is found. ` `        ``if` `(arr[i] == x) ` `            ``return` `i; ` ` `  `        ``// Else jumping to abs(arr[i]-x). ` `        ``i += ``abs``(arr[i]-x); ` `    ``} ` ` `  `    ``return` `-1; ` `} ` ` `  `// Driven Program ` `int` `main() ` `{ ` `    ``int` `arr[] =  {5, 4, 5, 6, 5, 4, 3, 2}; ` `    ``int` `n = ``sizeof``(arr)/``sizeof``(arr); ` `    ``int` `x = 4; ` ` `  `    ``cout << search(arr, n, x) << endl; ` ` `  `    ``return` `0; ` `} `

## Java

 `// Java program to search an element  ` `// in an array where each element is ` `// obtained by adding either +1 or ` `// -1 to previous element. ` `class` `GFG ` `{ ` `     `  `// Return the index of the ` `// element to be searched. ` `static` `int` `search(``int` `arr[], ``int` `n, ``int` `x) ` `{ ` `    ``// Searching x in arr[0..n-1] ` `    ``int` `i = ``0``; ` `    ``while` `(i <= n-``1``) ` `    ``{ ` `        ``// Checking if element is found. ` `        ``if` `(arr[i] == x) ` `            ``return` `i; ` ` `  `        ``// Else jumping to abs(arr[i]-x). ` `        ``i += Math.abs(arr[i]-x); ` `    ``} ` ` `  `    ``return` `-``1``; ` `} ` ` `  `// Driver code ` `public` `static` `void` `main (String[] args) ` `{ ` `    ``int` `arr[] = {``5``, ``4``, ``5``, ``6``, ``5``, ``4``, ``3``, ``2``}; ` `    ``int` `n = arr.length; ` `    ``int` `x = ``4``; ` ` `  `    ``System.out.println(search(arr, n, x)); ` `} ` `} ` ` `  `// This code is contributed by Anant Agarwal. `

## Python3

 `# Python program to search an element in  ` `# an array where each element is obtained  ` `# by adding either +1 or -1 to previous element ` ` `  `# Return the index of the element to be searched ` `def` `search(arr, n, x): ` ` `  `    ``# Searching x in arr[0..n-1] ` `    ``i ``=` `0` `    ``while` `(i <``=` `n``-``1``): ` `     `  `        ``# Checking if element is found. ` `        ``if` `(arr[i] ``=``=` `x): ` `            ``return` `i ` ` `  `        ``# Else jumping to abs(arr[i]-x). ` `        ``i ``+``=` `abs``(arr[i] ``-` `x) ` `     `  `    ``return` `-``1` ` `  `# Driver code ` `arr ``=` `[``5``, ``4``, ``5``, ``6``, ``5``, ``4``, ``3``, ``2``] ` `n ``=` `len``(arr) ` `x ``=` `4` ` `  `print``(search(arr, n, x)) ` ` `  `# This code is contributed by Anant Agarwal. `

## C#

 `// C# program to search an element in  ` `// an array where each element is ` `// obtained by adding either + 1 or ` `// -1 to previous element. ` `using` `System; ` ` `  `class` `GFG ` `{ ` `     `  `// Return the index of the ` `// element to be searched. ` `static` `int` `search(``int` `[]arr, ``int` `n, ` `                  ``int` `x) ` `{ ` `     `  `    ``// Searching x in arr[0.. n - 1] ` `    ``int` `i = 0; ` `    ``while` `(i <= n - 1) ` `    ``{ ` `        ``// Checking if element is found ` `        ``if` `(arr[i] == x) ` `            ``return` `i; ` ` `  `        ``// Else jumping to abs(arr[i] - x) ` `        ``i += Math.Abs(arr[i] - x); ` `    ``} ` ` `  `    ``return` `-1; ` `} ` ` `  `// Driver code ` `public` `static` `void` `Main () ` `{ ` `    ``int` `[]arr = {5, 4, 5, 6, 5, 4, 3, 2}; ` `    ``int` `n = arr.Length; ` `    ``int` `x = 4; ` ` `  `    ``Console.WriteLine(search(arr, n, x)); ` `} ` `} ` ` `  `// This code is contributed by vt_m. `

## PHP

 ` `

Output:

```1
```

This article is contributed by Anuj Chauhan. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up

Improved By : vt_m, nitin mittal

Article Tags :
Practice Tags :

5

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.