 Open in App
Not now

# Edit distance and LCS (Longest Common Subsequence)

• Difficulty Level : Medium
• Last Updated : 29 Aug, 2022

In standard Edit Distance where we are allowed 3 operations, insert, delete, and replace. Consider a variation of edit distance where we are allowed only two operations insert and delete, find edit distance in this variation.

Examples:

```Input : str1 = "cat", st2 = "cut"
Output : 2
We are allowed to insert and delete. We delete 'a'
from "cat" and insert "u" to make it "cut".

Input : str1 = "acb", st2 = "ab"
Output : 1
We can convert "acb" to "ab" by removing 'c'. ```

One solution is to simply modify the Edit Distance Solution by making two recursive calls instead of three. An interesting solution is based on LCS.

1. Find LCS of two strings. Let the length of LCS be x
2. Let the length of the first string be m and the length of the second string be n. Our result is (m – x) + (n – x). We basically need to do (m – x) delete operations and (n – x) insert operations.

Implementation:

## C++

 `// CPP program to find Edit Distance (when only two``// operations are allowed, insert and delete) using LCS.``#include``using` `namespace` `std;` `int` `editDistanceWith2Ops(string &X, string &Y)``{``    ``// Find LCS``    ``int` `m = X.length(), n = Y.length();``    ``int` `L[m+1][n+1];``    ``for` `(``int` `i=0; i<=m; i++)``    ``{``        ``for` `(``int` `j=0; j<=n; j++)``        ``{``            ``if` `(i == 0 || j == 0)``                ``L[i][j] = 0;``            ``else` `if` `(X[i-1] == Y[j-1])``                ``L[i][j] = L[i-1][j-1] + 1;``            ``else``                ``L[i][j] = max(L[i-1][j], L[i][j-1]);``        ``}``    ``}   ``    ``int` `lcs  = L[m][n];` `    ``// Edit distance is delete operations +``    ``// insert operations.``    ``return` `(m - lcs) + (n - lcs);``}` `/* Driver program to test above function */``int` `main()``{``    ``string X = ``"abc"``, Y = ``"acd"``;``    ``cout << editDistanceWith2Ops(X, Y);``    ``return` `0;``}`

## Java

 `//Java program to find Edit Distance (when only two``// operations are allowed, insert and delete) using LCS.` `class` `GFG {` `    ``static` `int` `editDistanceWith2Ops(String X, String Y) {``        ``// Find LCS``        ``int` `m = X.length(), n = Y.length();``        ``int` `L[][] = ``new` `int``[m + ``1``][n + ``1``];``        ``for` `(``int` `i = ``0``; i <= m; i++) {``            ``for` `(``int` `j = ``0``; j <= n; j++) {``                ``if` `(i == ``0` `|| j == ``0``) {``                    ``L[i][j] = ``0``;``                ``} ``else` `if` `(X.charAt(i - ``1``) == Y.charAt(j - ``1``)) {``                    ``L[i][j] = L[i - ``1``][j - ``1``] + ``1``;``                ``} ``else` `{``                    ``L[i][j] = Math.max(L[i - ``1``][j], L[i][j - ``1``]);``                ``}``            ``}``        ``}``        ``int` `lcs = L[m][n];` `        ``// Edit distance is delete operations +``        ``// insert operations.``        ``return` `(m - lcs) + (n - lcs);``    ``}` `    ``/* Driver program to test above function */``    ``public` `static` `void` `main(String[] args) {``        ``String X = ``"abc"``, Y = ``"acd"``;``        ``System.out.println(editDistanceWith2Ops(X, Y));` `    ``}``}``/* This Java code is contributed by 29AjayKumar*/`

## Python 3

 `# Python 3 program to find Edit Distance``# (when only two operations are allowed,``# insert and delete) using LCS.` `def` `editDistanceWith2Ops(X, Y):` `    ``# Find LCS``    ``m ``=` `len``(X)``    ``n ``=` `len``(Y)``    ``L ``=` `[[``0` `for` `x ``in` `range``(n ``+` `1``)]``            ``for` `y ``in` `range``(m ``+` `1``)]``    ``for` `i ``in` `range``(m ``+` `1``):``        ``for` `j ``in` `range``(n ``+` `1``):``            ``if` `(i ``=``=` `0` `or` `j ``=``=` `0``):``                ``L[i][j] ``=` `0``            ``elif` `(X[i ``-` `1``] ``=``=` `Y[j ``-` `1``]):``                ``L[i][j] ``=` `L[i ``-` `1``][j ``-` `1``] ``+` `1``            ``else``:``                ``L[i][j] ``=` `max``(L[i ``-` `1``][j],``                              ``L[i][j ``-` `1``])` `    ``lcs ``=` `L[m][n]` `    ``# Edit distance is delete operations +``    ``# insert operations.``    ``return` `(m ``-` `lcs) ``+` `(n ``-` `lcs)` `# Driver Code``if` `__name__ ``=``=` `"__main__"``:``    ` `    ``X ``=` `"abc"``    ``Y ``=` `"acd"``    ``print``(editDistanceWith2Ops(X, Y))` `# This code is contributed by ita_c`

## C#

 `// C# program to find Edit Distance``// (when only two operations are``// allowed, insert and delete) using LCS.``using` `System;` `class` `GFG``{` `static` `int` `editDistanceWith2Ops(String X,``                                ``String Y)``{``    ``// Find LCS``    ``int` `m = X.Length, n = Y.Length;``    ``int` `[ , ]L = ``new` `int``[m + 1 , n + 1];``    ``for` `(``int` `i = 0; i <= m; i++)``    ``{``        ``for` `(``int` `j = 0; j <= n; j++)``        ``{``            ``if` `(i == 0 || j == 0)``            ``{``                ``L[i , j] = 0;``            ``}``            ``else` `if` `(X[i - 1] == Y[j - 1])``            ``{``                ``L[i , j] = L[i - 1 , j - 1] + 1;``            ``}``            ``else``            ``{``                ``L[i , j] = Math.Max(L[i - 1 , j],``                                    ``L[i , j - 1]);``            ``}``        ``}``    ``}``    ``int` `lcs = L[m , n];` `    ``// Edit distance is delete operations +``    ``// insert operations.``    ``return` `(m - lcs) + (n - lcs);``}` `// Driver Code``public` `static` `void` `Main()``{``    ``String X = ``"abc"``, Y = ``"acd"``;``    ``Console.Write(editDistanceWith2Ops(X, Y));``}``}` `// This code is contributed``// by 29AjayKumar`

## PHP

 ``

## Javascript

 ``

Output

`2`

Complexity Analysis:

• Time Complexity: O(m * n)
• Auxiliary Space: O(m * n)

My Personal Notes arrow_drop_up