Dynamic Convex hull | Adding Points to an Existing Convex Hull
Given a convex hull, we need to add a given number of points to the convex hull and print the convex hull after every point addition. The points should be in anti-clockwise order after addition of every point.
Examples:
Input : Convex Hull : (0, 0), (3, -1), (4, 5), (-1, 4) Point to add : (100, 100) Output : New convex hull : (-1, 4) (0, 0) (3, -1) (100, 100)
We first check whether the point is inside the given convex hull or not. If it is, then nothing has to be done we directly return the given convex hull. If the point is outside the convex hull, we find the lower and upper tangents, and then merge the point with the given convex hull to find the new convex hull, as shown in the figure.
The red outline shows the new convex hull after merging the point and the given convex hull.
To find the upper tangent, we first choose a point on the hull that is nearest to the given point. Then while the line joining the point on the convex hull and the given point crosses the convex hull, we move anti-clockwise till we get the tangent line.
The figure shows the moving of the point on the convex hull for finding the upper tangent.
Note: It is assumed here that the input of the initial convex hull is in the anti-clockwise order, otherwise we have to first sort them in anti-clockwise order then apply the following code.
Code:
CPP
// C++ program to add given a point p to a given // convex hull. The program assumes that the // point of given convex hull are in anti-clockwise // order. #include<bits/stdc++.h> using namespace std; // checks whether the point crosses the convex hull // or not int orientation(pair< int , int > a, pair< int , int > b, pair< int , int > c) { int res = (b.second-a.second)*(c.first-b.first) - (c.second-b.second)*(b.first-a.first); if (res == 0) return 0; if (res > 0) return 1; return -1; } // Returns the square of distance between two input points int sqDist(pair< int , int > p1, pair< int , int > p2) { return (p1.first-p2.first)*(p1.first-p2.first) + (p1.second-p2.second)*(p1.second-p2.second); } // Checks whether the point is inside the convex hull or not bool inside(vector<pair< int , int >> a, pair< int , int > p) { // Initialize the centroid of the convex hull pair< int , int > mid = {0, 0}; int n = a.size(); // Multiplying with n to avoid floating point // arithmetic. p.first *= n; p.second *= n; for ( int i=0; i<n; i++) { mid.first += a[i].first; mid.second += a[i].second; a[i].first *= n; a[i].second *= n; } // if the mid and the given point lies always // on the same side w.r.t every edge of the // convex hull, then the point lies inside // the convex hull for ( int i=0, j; i<n; i++) { j = (i+1)%n; int x1 = a[i].first, x2 = a[j].first; int y1 = a[i].second, y2 = a[j].second; int a1 = y1-y2; int b1 = x2-x1; int c1 = x1*y2-y1*x2; int for_mid = a1*mid.first+b1*mid.second+c1; int for_p = a1*p.first+b1*p.second+c1; if (for_mid*for_p < 0) return false ; } return true ; } // Adds a point p to given convex hull a[] void addPoint(vector<pair< int , int >> &a, pair< int , int > p) { // If point is inside p if (inside(a, p)) return ; // point having minimum distance from the point p int ind = 0; int n = a.size(); for ( int i=1; i<n; i++) if (sqDist(p, a[i]) < sqDist(p, a[ind])) ind = i; // Find the upper tangent int up = ind; while (orientation(p, a[up], a[(up+1)%n])>=0) up = (up + 1) % n; // Find the lower tangent int low = ind; while (orientation(p, a[low], a[(n+low-1)%n])<=0) low = (n+low - 1) % n; // Initialize result vector<pair< int , int >>ret; // making the final hull by traversing points // from up to low of given convex hull. int curr = up; ret.push_back(a[curr]); while (curr != low) { curr = (curr+1)%n; ret.push_back(a[curr]); } // Modify the original vector ret.push_back(p); a.clear(); for ( int i=0; i<ret.size(); i++) a.push_back(ret[i]); } // Driver code int main() { // the set of points in the convex hull vector<pair< int , int > > a; a.push_back({0, 0}); a.push_back({3, -1}); a.push_back({4, 5}); a.push_back({-1, 4}); int n = a.size(); pair< int , int > p = {100, 100}; addPoint(a, p); // Print the modified Convex Hull for ( auto e : a) cout << "(" << e.first << ", " << e.second << ") " ; return 0; } |
Java
// Java program to add given a point p to a given // convex hull. The program assumes that the // point of given convex hull are in anti-clockwise // order. import java.io.*; import java.util.*; class GFG { // checks whether the point crosses the convex hull // or not static int orientation(ArrayList<Integer> a, ArrayList<Integer> b, ArrayList<Integer> c) { int res = (b.get( 1 ) - a.get( 1 )) * (c.get( 0 ) - b.get( 0 )) - (c.get( 1 ) - b.get( 1 )) * (b.get( 0 )-a.get( 0 )); if (res == 0 ) return 0 ; if (res > 0 ) return 1 ; return - 1 ; } // Returns the square of distance between two input points static int sqDist(ArrayList<Integer>p1, ArrayList<Integer>p2) { return (p1.get( 0 ) - p2.get( 0 )) * (p1.get( 0 ) - p2.get( 0 )) + (p1.get( 1 ) - p2.get( 1 )) * (p1.get( 1 ) - p2.get( 1 )); } // Checks whether the point is inside the convex hull or not static boolean inside(ArrayList<ArrayList<Integer>> A,ArrayList<Integer>p) { // Initialize the centroid of the convex hull ArrayList<Integer> mid = new ArrayList<Integer>(Arrays.asList( 0 , 0 )); int n = A.size(); for ( int i = 0 ; i < n; i++) { mid.set( 0 ,mid.get( 0 ) + A.get(i).get( 0 )); mid.set( 1 ,mid.get( 1 ) + A.get(i).get( 1 )); } // if the mid and the given point lies always // on the same side w.r.t every edge of the // convex hull, then the point lies inside // the convex hull for ( int i = 0 , j; i < n; i++) { j = (i + 1 ) % n; int x1 = A.get(i).get( 0 )*n, x2 = A.get(j).get( 0 )*n; int y1 = A.get(i).get( 1 )*n, y2 = A.get(j).get( 1 )*n; int a1 = y1 - y2; int b1 = x2 - x1; int c1 = x1 * y2 - y1 * x2; int for_mid = a1 * mid.get( 0 ) + b1 * mid.get( 1 ) + c1; int for_p = a1 * p.get( 0 ) * n + b1 * p.get( 1 ) * n + c1; if (for_mid*for_p < 0 ) return false ; } return true ; } // Adds a point p to given convex hull a[] static void addPoint(ArrayList<ArrayList<Integer>> a,ArrayList<Integer> p) { // If point is inside p if (inside(a, p)) return ; // point having minimum distance from the point p int ind = 0 ; int n = a.size(); for ( int i = 1 ; i < n; i++) { if (sqDist(p, a.get(i)) < sqDist(p, a.get(ind))) { ind = i; } } // Find the upper tangent int up = ind; while (orientation(p, a.get(up), a.get((up+ 1 )%n))>= 0 ) up = (up + 1 ) % n; // Find the lower tangent int low = ind; while (orientation(p, a.get(low), a.get((n+low- 1 )%n))<= 0 ) low = (n+low - 1 ) % n; // Initialize result ArrayList<ArrayList<Integer>> ret = new ArrayList<ArrayList<Integer>>(); // making the final hull by traversing points // from up to low of given convex hull. int curr = up; ret.add(a.get(curr)); while (curr != low) { curr = (curr + 1 ) % n; ret.add(a.get(curr)); } // Modify the original vector ret.add(p); a.clear(); for ( int i = 0 ; i < ret.size(); i++) { a.add(ret.get(i)); } } // Driver code public static void main (String[] args) { // the set of points in the convex hull ArrayList<ArrayList<Integer>> a = new ArrayList<ArrayList<Integer>>(); a.add( new ArrayList<Integer>(Arrays.asList( 0 , 0 ))); a.add( new ArrayList<Integer>(Arrays.asList( 3 , - 1 ))); a.add( new ArrayList<Integer>(Arrays.asList( 4 , 5 ))); a.add( new ArrayList<Integer>(Arrays.asList(- 1 , 4 ))); int n = a.size(); ArrayList<Integer> p = new ArrayList<Integer>(Arrays.asList( 100 , 100 )); addPoint(a, p); // Print the modified Convex Hull for (ArrayList<Integer> e:a ) { System.out.print( "(" + e.get( 0 ) + ", " + e.get( 1 ) + ") " ); } } } // This code is contributed by rag2127 |
Python3
# Python 3 program to add given a point p to a given # convex hull. The program assumes that the # point of given convex hull are in anti-clockwise # order. import copy # checks whether the point crosses the convex hull # or not def orientation(a, b, c): res = ((b[ 1 ] - a[ 1 ]) * (c[ 0 ] - b[ 0 ]) - (c[ 1 ] - b[ 1 ]) * (b[ 0 ] - a[ 0 ])) if (res = = 0 ): return 0 ; if (res > 0 ): return 1 ; return - 1 ; # Returns the square of distance between two input points def sqDist(p1, p2): return ((p1[ 0 ] - p2[ 0 ]) * (p1[ 0 ] - p2[ 0 ]) + (p1[ 1 ] - p2[ 1 ]) * (p1[ 1 ] - p2[ 1 ])); # Checks whether the point is inside the convex hull or not def inside( a, p ): # Initialize the centroid of the convex hull mid = [ 0 , 0 ] n = len (a) # Multiplying with n to avoid floating point # arithmetic. p[ 0 ] * = n; p[ 1 ] * = n; for i in range (n): mid[ 0 ] + = a[i][ 0 ]; mid[ 1 ] + = a[i][ 1 ]; a[i][ 0 ] * = n; a[i][ 1 ] * = n; # if the mid and the given point lies always # on the same side w.r.t every edge of the # convex hull, then the point lies inside # the convex hull for i in range ( n ): j = (i + 1 ) % n; x1 = a[i][ 0 ] x2 = a[j][ 0 ] y1 = a[i][ 1 ] y2 = a[j][ 1 ] a1 = y1 - y2; b1 = x2 - x1; c1 = x1 * y2 - y1 * x2; for_mid = a1 * mid[ 0 ] + b1 * mid[ 1 ] + c1; for_p = a1 * p[ 0 ] + b1 * p[ 1 ] + c1; if (for_mid * for_p < 0 ): return False ; return True ; # Adds a point p to given convex hull a[] def addPoint( a, p): # If point is inside p arr = copy.deepcopy(a) prr = p.copy() if (inside(arr, prr)): return ; # point having minimum distance from the point p ind = 0 ; n = len (a) for i in range ( 1 , n): if (sqDist(p, a[i]) < sqDist(p, a[ind])): ind = i # Find the upper tangent up = ind; while (orientation(p, a[up], a[(up + 1 ) % n]) > = 0 ): up = (up + 1 ) % n; # Find the lower tangent low = ind; while (orientation(p, a[low], a[(n + low - 1 ) % n]) < = 0 ): low = (n + low - 1 ) % n # Initialize result ret = [] # making the final hull by traversing points # from up to low of given convex hull. curr = up; ret.append(a[curr]); while (curr ! = low): curr = (curr + 1 ) % n; ret.append(a[curr]); # Modify the original vector ret.append(p); a.clear(); for i in range ( len (ret)): a.append(ret[i]); # Driver code if __name__ = = "__main__" : # the set of points in the convex hull a = [] a.append([ 0 , 0 ]); a.append([ 3 , - 1 ]); a.append([ 4 , 5 ]); a.append([ - 1 , 4 ]); n = len (a) p = [ 100 , 100 ] addPoint(a, p); # Print the modified Convex Hull for e in a : print ( "(" , e[ 0 ], ", " , e[ 1 ] , ") " ,end = " " ) # This code is contributed by chitranayal |
C#
// C# program to add given a point p to a given // convex hull. The program assumes that the // point of given convex hull are in anti-clockwise // order. using System; using System.Collections.Generic; public class GFG{ // checks whether the point crosses the convex hull // or not static int orientation(List< int > a,List< int > b,List< int > c) { int res=(b[1]-a[1]) * (c[0]-b[0]) - (c[1]-b[1]) * (b[0]-a[0]); if (res == 0) return 0; if (res > 0) return 1; return -1; } // Returns the square of distance between two input points static int sqDist(List< int >p1, List< int >p2) { return (p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]); } // Checks whether the point is inside the convex hull or not static bool inside(List<List< int >> A,List< int >p) { // Initialize the centroid of the convex hull List< int > mid = new List< int >(){0,0}; int n = A.Count; for ( int i = 0; i < n; i++) { mid[0]+=A[i][0]; mid[1]+=A[i][1]; } // if the mid and the given point lies always // on the same side w.r.t every edge of the // convex hull, then the point lies inside // the convex hull for ( int i = 0, j; i < n; i++) { j = (i + 1) % n; int x1 = A[i][0]*n, x2 = A[j][0]*n; int y1 = A[i][1]*n, y2 = A[j][1]*n; int a1 = y1 - y2; int b1 = x2 - x1; int c1 = x1 * y2 - y1 * x2; int for_mid = a1 * mid[0] + b1 * mid[1] + c1; int for_p = a1 * p[0] * n + b1 * p[1] * n + c1; if (for_mid*for_p < 0) return false ; } return true ; } // Adds a point p to given convex hull a[] static void addPoint(List<List< int >> a,List< int > p) { // If point is inside p if (inside(a, p)) return ; // point having minimum distance from the point p int ind = 0; int n = a.Count; for ( int i = 1; i < n; i++) { if (sqDist(p, a[i]) < sqDist(p, a[ind])) { ind = i; } } // Find the upper tangent int up = ind; while (orientation(p, a[up], a[(up+1)%n])>=0) up = (up + 1) % n; // Find the lower tangent int low = ind; while (orientation(p, a[low], a[(n+low-1)%n])<=0) low = (n+low - 1) % n; // Initialize result List<List< int >> ret = new List<List< int >>(); // making the final hull by traversing points // from up to low of given convex hull. int curr = up; ret.Add(a[curr]); while (curr != low) { curr = (curr + 1) % n; ret.Add(a[curr]); } // Modify the original vector ret.Add(p); a.Clear(); for ( int i = 0; i < ret.Count; i++) { a.Add(ret[i]); } } // Driver code static public void Main (){ // the set of points in the convex hull List<List< int >> a = new List<List< int >>(); a.Add( new List< int >(){0,0}); a.Add( new List< int >(){3,-1}); a.Add( new List< int >(){4,5}); a.Add( new List< int >(){-1,4}); int n=a.Count; List< int > p = new List< int >(){100,100}; addPoint(a, p); // Print the modified Convex Hull foreach (List< int > e in a) { Console.Write( "(" + e[0] + ", " + e[1] + ") " ); } } } // This code is contributed by avanitrachhadiya2155 |
Javascript
<script> // Javascript program to add given a point p to a given // convex hull. The program assumes that the // point of given convex hull are in anti-clockwise // order. // checks whether the point crosses the convex hull // or not function orientation(a,b,c) { let res = (b[1] - a[1]) * (c[0] - b[0]) - (c[1] - b[1]) * (b[0]-a[0]); if (res == 0) return 0; if (res > 0) return 1; return -1; } // Returns the square of distance between two input points function sqDist(p1,p2) { return (p1[0] - p2[0]) * (p1[0] - p2[0]) + (p1[1] - p2[1]) * (p1[1] - p2[1]); } // Checks whether the point is inside the convex hull or not function inside(A,p) { // Initialize the centroid of the convex hull let mid = [0,0]; let n = A.length; for (let i = 0; i < n; i++) { mid[0]+=A[i][0]; mid[1]+=A[i][1]; } // if the mid and the given point lies always // on the same side w.r.t every edge of the // convex hull, then the point lies inside // the convex hull for (let i = 0, j; i < n; i++) { j = (i + 1) % n; let x1 = A[i][0]*n, x2 = A[j][0]*n; let y1 = A[i][1]*n, y2 = A[j][1]*n; let a1 = y1 - y2; let b1 = x2 - x1; let c1 = x1 * y2 - y1 * x2; let for_mid = a1 * mid[0] + b1 * mid[1] + c1; let for_p = a1 * p[0] * n + b1 * p[1] * n + c1; if (for_mid*for_p < 0) return false ; } return true ; } // Adds a point p to given convex hull a[] function addPoint(a,p) { // If point is inside p if (inside(a, p)) return ; // point having minimum distance from the point p let ind = 0; let n = a.length; for (let i = 1; i < n; i++) { if (sqDist(p, a[i]) < sqDist(p, a[ind])) { ind = i; } } // Find the upper tangent let up = ind; while (orientation(p, a[up], a[(up+1)%n])>=0) up = (up + 1) % n; // Find the lower tangent let low = ind; while (orientation(p, a[low], a[(n+low-1)%n])<=0) low = (n+low - 1) % n; // Initialize result let ret = []; // making the final hull by traversing points // from up to low of given convex hull. let curr = up; ret.push(a[curr]); while (curr != low) { curr = (curr + 1) % n; ret.push(a[curr]); } // Modify the original vector ret.push(p); a=[]; for (let i = 0; i < ret.length; i++) { a.push(ret[i]); } return a; } // Driver code // the set of points in the convex hull let a = [] a.push([0, 0]); a.push([3, -1]); a.push([4, 5]); a.push([-1, 4]); let n=a.length; let p=[100,100]; a=addPoint(a, p); // Print the modified Convex Hull for (let e=0;e<a.length;e++ ) { document.write( "(" + a[e][0] + ", " + a[e][1] + ") " ); } // This code is contributed by ab2127 </script> |
Output:
(-1, 4) (0, 0) (3, -1) (100, 100)
Time Complexity:
The time complexity of the above algorithm is O(n*q), where q is the number of points to be added.
Auxiliary Space: O(n), since n extra space has been taken.
This article is contributed by Aarti_Rathi and Amritya Vagmi and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...