Skip to content
Related Articles

Related Articles

Dynamic Convex hull | Adding Points to an Existing Convex Hull
  • Difficulty Level : Hard
  • Last Updated : 12 Mar, 2021

Given a convex hull, we need to add a given number of points to the convex hull and print the convex hull after every point addition. The points should be in anti-clockwise order after addition of every point. 
Examples: 
 

Input : 
Convex Hull : (0, 0), (3, -1), (4, 5), (-1, 4)
Point to add : (100, 100)

Output :
New convex hull : (-1, 4) (0, 0) (3, -1) (100, 100)

 

We first check whether the point is inside the given convex hull or not. If it is, then nothing has to be done we directly return the given convex hull. If the point is outside the convex hull, we find the lower and upper tangents, and then merge the point with the given convex hull to find the new convex hull, as shown in the figure.
 

point_to_hull2

The red outline shows the new convex hull after merging the point and the given convex hull.
To find the upper tangent, we first choose a point on the hull that is nearest to the given point. Then while the line joining the point on the convex hull and the given point crosses the convex hull, we move anti-clockwise till we get the tangent line.
 



point_to_hull

The figure shows the moving of the point on the convex hull for finding the upper tangent.
Note: It is assumed here that the input of the initial convex hull is in the anti-clockwise order, otherwise we have to first sort them in anti-clockwise order then apply the following code.
 

Code: 
 

CPP




// C++ program to add given a point p to a given
// convext hull. The program assumes that the
// point of given convext hull are in anti-clockwise
// order.
#include<bits/stdc++.h>
using namespace std;
 
// checks whether the point crosses the convex hull
// or not
int orientation(pair<int, int> a, pair<int, int> b,
                pair<int, int> c)
{
    int res = (b.second-a.second)*(c.first-b.first) -
              (c.second-b.second)*(b.first-a.first);
 
    if (res == 0)
        return 0;
    if (res > 0)
        return 1;
    return -1;
}
 
// Returns the square of distance between two input points
int sqDist(pair<int, int> p1, pair<int, int> p2)
{
    return (p1.first-p2.first)*(p1.first-p2.first) +
           (p1.second-p2.second)*(p1.second-p2.second);
}
 
// Checks whether the point is inside the convex hull or not
bool inside(vector<pair<int, int>> a, pair<int, int> p)
{
    // Initialize the centroid of the convex hull
    pair<int, int> mid = {0, 0};
 
    int n = a.size();
 
    // Multiplying with n to avoid floating point
    // arithmetic.
    p.first *= n;
    p.second *= n;
    for (int i=0; i<n; i++)
    {
        mid.first += a[i].first;
        mid.second += a[i].second;
        a[i].first *= n;
        a[i].second *= n;
    }
 
    // if the mid and the given point lies always
    // on the same side w.r.t every edge of the
    // convex hull, then the point lies inside
    // the convex hull
    for (int i=0, j; i<n; i++)
    {
        j = (i+1)%n;
        int x1 = a[i].first, x2 = a[j].first;
        int y1 = a[i].second, y2 = a[j].second;
        int a1 = y1-y2;
        int b1 = x2-x1;
        int c1 = x1*y2-y1*x2;
        int for_mid = a1*mid.first+b1*mid.second+c1;
        int for_p = a1*p.first+b1*p.second+c1;
        if (for_mid*for_p < 0)
            return false;
    }
 
    return true;
}
 
// Adds a point p to given convex hull a[]
void addPoint(vector<pair<int, int>> &a, pair<int, int> p)
{
    // If point is inside p
    if (inside(a, p))
        return;
   
    // point having minimum distance from the point p
    int ind = 0;
    int n = a.size();
    for (int i=1; i<n; i++)
        if (sqDist(p, a[i]) < sqDist(p, a[ind]))
            ind = i;
 
    // Find the upper tangent
    int up = ind;
    while (orientation(p, a[up], a[(up+1)%n])>=0)
        up = (up + 1) % n;
 
    // Find the lower tangent
    int low = ind;
    while (orientation(p, a[low], a[(n+low-1)%n])<=0)
        low = (n+low - 1) % n;
 
    // Initialize result
    vector<pair<int, int>>ret;
 
    // making the final hull by traversing points
    // from up to low of given convex hull.
    int curr = up;
    ret.push_back(a[curr]);
    while (curr != low)
    {
        curr = (curr+1)%n;
        ret.push_back(a[curr]);
    }
 
    // Modify the original vector
    ret.push_back(p);
    a.clear();
    for (int i=0; i<ret.size(); i++)
        a.push_back(ret[i]);
}
 
// Driver code
int main()
{
    // the set of points in the convex hull
    vector<pair<int, int> > a;
    a.push_back({0, 0});
    a.push_back({3, -1});
    a.push_back({4, 5});
    a.push_back({-1, 4});
    int n = a.size();
 
    pair<int, int> p = {100, 100};
    addPoint(a, p);
 
    // Print the modified Convex Hull
    for (auto e : a)
        cout << "(" << e.first << ", "
              << e.second << ") ";
 
    return 0;
}

Java




// Java program to add given a point p to a given
// convext hull. The program assumes that the
// point of given convext hull are in anti-clockwise
// order.
 
import java.io.*;
import java.util.*;
class GFG
{
 
  // checks whether the point crosses the convex hull
  // or not
  static int orientation(ArrayList<Integer> a,
                         ArrayList<Integer> b,
                         ArrayList<Integer> c)
  {
    int res = (b.get(1) - a.get(1)) * (c.get(0) - b.get(0)) -
      (c.get(1) - b.get(1)) * (b.get(0)-a.get(0));
    if (res == 0)
      return 0;
    if (res > 0)
      return 1;
    return -1;
  }
 
  // Returns the square of distance between two input points
  static int sqDist(ArrayList<Integer>p1, ArrayList<Integer>p2)
  {
    return (p1.get(0) - p2.get(0)) * (p1.get(0) - p2.get(0)) +
      (p1.get(1) - p2.get(1)) * (p1.get(1) - p2.get(1));
  }
 
  // Checks whether the point is inside the convex hull or not
  static boolean inside(ArrayList<ArrayList<Integer>> A,ArrayList<Integer>p)
  {
 
    // Initialize the centroid of the convex hull
    ArrayList<Integer> mid = new ArrayList<Integer>(Arrays.asList(0,0));
 
    int n = A.size();
 
 
    for (int i = 0; i < n; i++)
    {
      mid.set(0,mid.get(0) + A.get(i).get(0));
      mid.set(1,mid.get(1) + A.get(i).get(1));
 
    }
 
    // if the mid and the given point lies always
    // on the same side w.r.t every edge of the
    // convex hull, then the point lies inside
    // the convex hull
    for (int i = 0, j; i < n; i++)
    {
      j = (i + 1) % n;
      int x1 = A.get(i).get(0)*n, x2 = A.get(j).get(0)*n;
      int y1 = A.get(i).get(1)*n, y2 = A.get(j).get(1)*n;
      int a1 = y1 - y2;
      int b1 = x2 - x1;
      int c1 = x1 * y2 - y1 * x2;
      int for_mid = a1 * mid.get(0) + b1 * mid.get(1) + c1;
      int for_p = a1 * p.get(0) * n + b1 * p.get(1) * n + c1;
      if (for_mid*for_p < 0)
        return false;
    }
    return true;
  }
 
  // Adds a point p to given convex hull a[]
  static void addPoint(ArrayList<ArrayList<Integer>> a,ArrayList<Integer> p)
  {
 
    // If point is inside p
    if (inside(a, p))
      return;
 
    // point having minimum distance from the point p
    int ind = 0;
    int n = a.size();
    for (int i = 1; i < n; i++)
    {
      if (sqDist(p, a.get(i)) < sqDist(p, a.get(ind)))
      {
        ind = i;
      }
    }
 
    // Find the upper tangent
    int up = ind;
    while (orientation(p, a.get(up), a.get((up+1)%n))>=0)
      up = (up + 1) % n;
 
    // Find the lower tangent
    int low = ind;
    while (orientation(p, a.get(low), a.get((n+low-1)%n))<=0)
      low = (n+low - 1) % n;
 
    // Initialize result
    ArrayList<ArrayList<Integer>> ret = new ArrayList<ArrayList<Integer>>();
 
    // making the final hull by traversing points
    // from up to low of given convex hull.
    int curr = up;
    ret.add(a.get(curr));
 
    while (curr != low)
    {
      curr = (curr + 1) % n;
      ret.add(a.get(curr));
    }
 
    // Modify the original vector
 
    ret.add(p);
    a.clear();
    for (int i = 0; i < ret.size(); i++)
    {
      a.add(ret.get(i));
    }
  }
 
  // Driver code
  public static void main (String[] args)
  {
 
    // the set of points in the convex hull
    ArrayList<ArrayList<Integer>> a = new ArrayList<ArrayList<Integer>>();
 
    a.add(new ArrayList<Integer>(Arrays.asList(0, 0)));
    a.add(new ArrayList<Integer>(Arrays.asList(3, -1)));
    a.add(new ArrayList<Integer>(Arrays.asList(4, 5)));
    a.add(new ArrayList<Integer>(Arrays.asList(-1, 4)));
 
    int n = a.size();
 
    ArrayList<Integer> p = new ArrayList<Integer>(Arrays.asList(100,100));
 
    addPoint(a, p);
    // Print the modified Convex Hull
    for(ArrayList<Integer> e:a )
    {
      System.out.print("(" + e.get(0) + ", " + e.get(1) + ") ");
    }
  }
}
 
// This code is contributed by rag2127

Python3




# Python 3 program to add given a point p to a given
# convext hull. The program assumes that the
# point of given convext hull are in anti-clockwise
# order.
import copy
 
# checks whether the point crosses the convex hull
# or not
def orientation(a, b, c):
 
    res = ((b[1] - a[1]) * (c[0] - b[0]) -
              (c[1] - b[1]) * (b[0] - a[0]))
 
    if (res == 0):
        return 0;
    if (res > 0):
        return 1;
    return -1;
 
# Returns the square of distance between two input points
def sqDist(p1, p2):
 
    return ((p1[0] - p2[0]) * (p1[0] - p2[0]) +
           (p1[1] - p2[1]) * (p1[1] - p2[1]));
 
# Checks whether the point is inside the convex hull or not
def inside( a, p ):
 
    # Initialize the centroid of the convex hull
    mid = [0, 0]
 
    n = len(a)
 
    # Multiplying with n to avoid floating point
    # arithmetic.
    p[0] *= n;
    p[1] *= n;
    for i in range(n):
       
        mid[0] += a[i][0];
        mid[1] += a[i][1];
        a[i][0] *= n;
        a[i][1] *= n;
     
    # if the mid and the given point lies always
    # on the same side w.r.t every edge of the
    # convex hull, then the point lies inside
    # the convex hull
    for i in range( n ):
     
        j = (i + 1) % n;
        x1 = a[i][0]
        x2 = a[j][0]
        y1 = a[i][1]
        y2 = a[j][1]
        a1 = y1 - y2;
        b1 = x2 - x1;
        c1 = x1 * y2 - y1 * x2;
        for_mid = a1 * mid[0] + b1 * mid[1] + c1;
        for_p = a1 * p[0] + b1*p[1]+c1;
        if (for_mid*for_p < 0):
            return False;
    
    return True;
 
# Adds a point p to given convex hull a[]
def addPoint( a, p):
 
    # If point is inside p
    arr= copy.deepcopy(a)
    prr =p.copy()
     
    if (inside(arr, prr)):
        return;
   
    # point having minimum distance from the point p
    ind = 0;
    n = len(a)
    for i in range(1, n):
        if (sqDist(p, a[i]) < sqDist(p, a[ind])):
            ind = i
 
    # Find the upper tangent
    up = ind;
    while (orientation(p, a[up], a[(up + 1) % n]) >= 0):
        up = (up + 1) % n;
 
    # Find the lower tangent
    low = ind;
    while (orientation(p, a[low], a[(n + low - 1) % n]) <= 0):
        low = (n + low - 1) % n
 
    # Initialize result
    ret = []
 
    # making the final hull by traversing points
    # from up to low of given convex hull.
    curr = up;
    ret.append(a[curr]);
    while (curr != low):
        curr = (curr + 1) % n;
        ret.append(a[curr]);
 
    # Modify the original vector
    ret.append(p);
    a.clear();
    for i in range(len(ret)):
        a.append(ret[i]);
 
# Driver code
if __name__ == "__main__":
   
    # the set of points in the convex hull
    a = []
    a.append([0, 0]);
    a.append([3, -1]);
    a.append([4, 5]);
    a.append([-1, 4]);
    n = len(a)
 
    p = [100, 100]
    addPoint(a, p);
 
    # Print the modified Convex Hull
    for e in a :
        print("(" , e[0], ", ",
              e[1] , ") ",end=" ")
 
# This code is contributed by chitranayal

C#




// C# program to add given a point p to a given
// convext hull. The program assumes that the
// point of given convext hull are in anti-clockwise
// order.
 
using System;
using System.Collections.Generic;
 
public class GFG{
 
  // checks whether the point crosses the convex hull
  // or not
  static int orientation(List<int> a,List<int> b,List<int> c)
  {
    int res=(b[1]-a[1]) * (c[0]-b[0]) - (c[1]-b[1]) * (b[0]-a[0]);
    if (res == 0)
      return 0;
    if (res > 0)
      return 1;
    return -1;
  }
  // Returns the square of distance between two input points
  static int sqDist(List<int>p1, List<int>p2)
  {
    return (p1[0] - p2[0]) * (p1[0] - p2[0]) +
      (p1[1] - p2[1]) * (p1[1] - p2[1]);
  }
 
  // Checks whether the point is inside the convex hull or not
  static bool inside(List<List<int>> A,List<int>p)
  {
 
    // Initialize the centroid of the convex hull
    List<int> mid = new List<int>(){0,0};
 
    int n = A.Count;
 
 
    for (int i = 0; i < n; i++)
    {
      mid[0]+=A[i][0];
      mid[1]+=A[i][1];
 
    }  
 
    // if the mid and the given point lies always
    // on the same side w.r.t every edge of the
    // convex hull, then the point lies inside
    // the convex hull
    for (int i = 0, j; i < n; i++)
    {
      j = (i + 1) % n;
      int x1 = A[i][0]*n, x2 = A[j][0]*n;
      int y1 = A[i][1]*n, y2 = A[j][1]*n;
      int a1 = y1 - y2;
      int b1 = x2 - x1;
      int c1 = x1 * y2 - y1 * x2;
      int for_mid = a1 * mid[0] + b1 * mid[1] + c1;
      int for_p = a1 * p[0] * n + b1 * p[1] * n + c1;
      if (for_mid*for_p < 0)
        return false;
    }
    return true;
  }
 
  // Adds a point p to given convex hull a[]
  static void addPoint(List<List<int>> a,List<int> p)
  {
 
    // If point is inside p
    if (inside(a, p))
      return;
 
    // point having minimum distance from the point p
    int ind = 0;
    int n = a.Count;
    for (int i = 1; i < n; i++)
    {
      if (sqDist(p, a[i]) < sqDist(p, a[ind]))
      {
        ind = i;
      }
    }
 
    // Find the upper tangent
    int up = ind;
    while (orientation(p, a[up], a[(up+1)%n])>=0)
      up = (up + 1) % n;
 
    // Find the lower tangent
    int low = ind;
    while (orientation(p, a[low], a[(n+low-1)%n])<=0)
      low = (n+low - 1) % n;
 
    // Initialize result
    List<List<int>> ret = new List<List<int>>();
 
    // making the final hull by traversing points
    // from up to low of given convex hull.
    int curr = up;
    ret.Add(a[curr]);
 
    while (curr != low)
    {
      curr = (curr + 1) % n;
      ret.Add(a[curr]);
    }
 
    // Modify the original vector
 
    ret.Add(p);
    a.Clear();
    for (int i = 0; i < ret.Count; i++)
    {
      a.Add(ret[i]);
    }
  }
 
  // Driver code
 
 
  static public void Main (){
    // the set of points in the convex hull
    List<List<int>> a = new List<List<int>>();
 
    a.Add(new List<int>(){0,0});
    a.Add(new List<int>(){3,-1});
    a.Add(new List<int>(){4,5});
    a.Add(new List<int>(){-1,4});
 
    int n=a.Count;
    List<int> p = new List<int>(){100,100};
    addPoint(a, p);
    // Print the modified Convex Hull
    foreach(List<int> e in a)
    {
      Console.Write("(" + e[0] + ", " + e[1] + ") ");
    }
 
  }
}
 
// This code is contributed by avanitrachhadiya2155

Output: 
 

(-1, 4) (0, 0) (3, -1) (100, 100)

Time Complexity: 
The time complexity of the above algorithm is O(n*q), where q is the number of points to be added.
This article is contributed by Amritya Vagmi and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

My Personal Notes arrow_drop_up
Recommended Articles
Page :