Skip to content
Related Articles

Related Articles

Improve Article

Duplicates Removal in Array using BST

  • Difficulty Level : Easy
  • Last Updated : 13 Aug, 2021

Given an array arr[] of integers, the task is to remove duplicates from the given array. 

Examples

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Input: arr[] = {1, 2, 3, 2, 5, 4, 4}
Output: arr[] = {1, 2, 3, 4, 5} 

Input: arr[] = {127, 234, 127, 654, 355, 789, 355, 355, 999, 654}
Output: arr[] = {127, 234, 355, 654, 789, 999}

The duplicates in the array can be removed using Binary Search Tree. The idea is to create a Binary Search Tree using the array elements with the condition that the first element is taken as the root(parent) element and when the element “less” than root appears, it is made the left child and the element “greater” than root is made the right child of the root. Since no condition for “equal” exists the duplicates are automatically removed when we form a binary search tree from the array elements. 



For the array, arr[] = {1, 2, 3, 2, 5, 4, 4}
BST will be: 
 

 

Approach: 

  • Form BST using the array elements
  • Display the elements using any Tree Traversal method.

Below is the implementation of the above approach. 

C++




// C++ Program of above implementation
#include <iostream>
using namespace std;
 
// Struct declaration
struct Node {
    int data;
    struct Node* left;
    struct Node* right;
};
 
// Node creation
struct Node* newNode(int data)
{
    struct Node* nn
        = new Node;
    nn->data = data;
    nn->left = NULL;
    nn->right = NULL;
    return nn;
}
 
// Function to insert data in BST
struct Node* insert(struct Node* root, int data)
{
    if (root == NULL)
        return newNode(data);
    else {
        if (data < root->data)
            root->left = insert(root->left, data);
        if (data > root->data)
            root->right = insert(root->right, data);
        return root;
    }
}
 
// InOrder function to display value of array
// in sorted order
void inOrder(struct Node* root)
{
    if (root == NULL)
        return;
    else {
        inOrder(root->left);
        cout << root->data << " ";
        inOrder(root->right);
    }
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 2, 5, 4, 4 };
 
    // Finding size of array arr[]
    int n = sizeof(arr) / sizeof(arr[0]);
 
    struct Node* root = NULL;
 
    for (int i = 0; i < n; i++) {
 
        // Insert element of arr[] in BST
        root = insert(root, arr[i]);
    }
 
    // Inorder Traversal to print nodes of Tree
    inOrder(root);
    return 0;
}
 
// This code is contributed by shivanisingh

C




// C Program of above implementation
#include <stdio.h>
#include <stdlib.h>
 
// Struct declaration
struct Node {
    int data;
    struct Node* left;
    struct Node* right;
};
 
// Node creation
struct Node* newNode(int data)
{
    struct Node* nn
        = (struct Node*)(malloc(sizeof(struct Node)));
    nn->data = data;
    nn->left = NULL;
    nn->right = NULL;
    return nn;
}
 
// Function to insert data in BST
struct Node* insert(struct Node* root, int data)
{
    if (root == NULL)
        return newNode(data);
    else {
        if (data < root->data)
            root->left = insert(root->left, data);
        if (data > root->data)
            root->right = insert(root->right, data);
        return root;
    }
}
 
// InOrder function to display value of array
// in sorted order
void inOrder(struct Node* root)
{
    if (root == NULL)
        return;
    else {
        inOrder(root->left);
        printf("%d ", root->data);
        inOrder(root->right);
    }
}
 
// Driver code
int main()
{
    int arr[] = { 1, 2, 3, 2, 5, 4, 4 };
 
    // Finding size of array arr[]
    int n = sizeof(arr) / sizeof(arr[0]);
 
    struct Node* root = NULL;
 
    for (int i = 0; i < n; i++) {
 
        // Insert element of arr[] in BST
        root = insert(root, arr[i]);
    }
 
    // Inorder Traversal to print nodes of Tree
    inOrder(root);
    return 0;
}

Java




// Java implementation of the approach
import java.util.Scanner;
 
// Node declaration
class Node
{
    int data;
    public Node left;
    public Node right;
    Node(int data)
    {
        this.data = data;
        left = right = null;
    }
}
 
class GFG
{
 
    // Function to insert data in BST
    public static Node insert(Node root, int data)
    {
        if (root == null)
            return new Node(data);
        if (data < root.data)
            root.left = insert(root.left, data);
        if (data > root.data)
            root.right = insert(root.right, data);
        return root;
    }
 
    // InOrder function to display value of array
    // in sorted order
    public static void inOrder(Node root)
    {
        if (root == null)
            return;
        inOrder(root.left);
        System.out.print(root.data+" ");
        inOrder(root.right);
    }
 
    // Driver Code
    public static void main(String []args){
        int arr[] = { 1, 2, 3, 2, 5, 4, 4 };
 
        // Finding size of array arr[]
        int n = arr.length;
 
        Node root = null;
        for (int i = 0; i < n; i++)
        {
            // Insert element of arr[] in BST
            root = insert(root,arr[i]);
        }
 
        // Inorder Traversal to print nodes of Tree
        inOrder(root);
    }
}
 
// This code is contributed by anishma

Python3




# Python3 implementation of the approach
 
# Binary tree node consists of data, a
# pointer to the left child and a
# pointer to the right child
class newNode :
    def __init__(self,data) :
        self.data = data;
        self.left = None;
        self.right = None;
 
# Function to insert data in BST
def insert(root, data) :
 
    if (root == None) :
        return newNode(data);
         
    else :
        if (data < root.data) :
            root.left = insert(root.left, data);
             
        if (data > root.data) :
            root.right = insert(root.right, data);
             
        return root;
 
# InOrder function to display value of array
# in sorted order
def inOrder(root) :
 
    if (root == None) :
        return;
         
    else :
        inOrder(root.left);
        print(root.data, end = " ");
        inOrder(root.right);
     
# Driver code
if __name__ == "__main__" :
 
    arr = [ 1, 2, 3, 2, 5, 4, 4 ];
 
    # Finding size of array arr[]
    n = len(arr);
 
    root = None;
 
    for i in range(n) :
 
        # Insert element of arr[] in BST
        root = insert(root, arr[i]);
 
    # Inorder Traversal to print nodes of Tree
    inOrder(root);
 
# This code is contributed by AnkitRai01

C#




// C# program of above implementation
using System;
 
// Node declaration 
public class Node 
    public int data; 
    public Node left; 
    public Node right;
     
    public Node(int data)
    {
        this.data = data;
        left = right = null;
    }
}
     
class GFG{
     
// Function to insert data in BST 
public static Node insert(Node root, int data)
{
    if (root == null)
        return new Node(data);
    if (data < root.data) 
        root.left = insert(root.left, data); 
    if (data > root.data)
        root.right = insert(root.right, data);
         
    return root; 
 
// InOrder function to display value of array 
// in sorted order 
public static void inOrder(Node root)
    if (root == null
        return
         
    inOrder(root.left); 
    Console.Write(root.data + " ");
    inOrder(root.right); 
}
 
// Driver Code   
static void Main()
{
    int[] arr = { 1, 2, 3, 2, 5, 4, 4 }; 
     
    // Finding size of array arr[] 
    int n = arr.Length; 
     
    Node root = null
    for(int i = 0; i < n; i++) 
    
         
        // Insert element of arr[] in BST
        root = insert(root, arr[i]);
    
     
    // Inorder Traversal to print nodes of Tree 
    inOrder(root);
}
}
 
// This code is contributed by divyeshrabadiya07

Javascript




<script>
 
// JavaScript program of above implementation
 
// Node declaration 
class Node 
    constructor(data)
    {
        this.data = data;
        this.left = null;
        this.right = null;
    }
}
 
 
// Function to insert data in BST 
function insert(root, data)
{
    if (root == null)
        return new Node(data);
    if (data < root.data) 
        root.left = insert(root.left, data); 
    if (data > root.data)
        root.right = insert(root.right, data);
         
    return root; 
 
// InOrder function to display value of array 
// in sorted order 
function inOrder(root)
    if (root == null
        return
         
    inOrder(root.left); 
    document.write(root.data + " ");
    inOrder(root.right); 
}
 
// Driver Code   
var arr = [1, 2, 3, 2, 5, 4, 4 ]; 
 
// Finding size of array arr[] 
var n = arr.length; 
 
var root = null
for(var i = 0; i < n; i++) 
     
    // Insert element of arr[] in BST
    root = insert(root, arr[i]);
 
// Inorder Traversal to print nodes of Tree 
inOrder(root);
 
 
</script>
Output: 
1 2 3 4 5

 

Time Complexity: O(N^2)      in the worst case(when the array is sorted) where N is the size of the given array.
Auxiliary Space: O(N).  




My Personal Notes arrow_drop_up
Recommended Articles
Page :