Skip to content
Related Articles

Related Articles

Drop a list of rows from a Pandas DataFrame

Improve Article
Save Article
Like Article
  • Last Updated : 30 Nov, 2021

Let us see how to drop a list of rows in a Pandas DataFrame. We can do this using the drop() function. We will also pass inplace = True as it makes sure that the changes we make in the instance are stored in that instance without doing any assignment
Over here is the code implementation of how to drop list of rows from the table :

Example 1 : 
 

Python3




# import the module
import pandas as pd
  
# creating a DataFrame
dictionary = {'Names':['Simon', 'Josh', 'Amen', 'Habby',
                       'Jonathan', 'Nick'],
              'Countries':['AUSTRIA', 'BELGIUM', 'BRAZIL',
                           'FRANCE', 'INDIA', 'GERMANY']}
table = pd.DataFrame(dictionary, columns = ['Names', 'Countries'],
                     index = ['a', 'b', 'c', 'd', 'e', 'f'])
  
display(table)
  
# gives the table with the dropped rows
display("Table with the dropped rows")
display(table.drop(['a', 'd']))
  
# gives the table with the dropped rows
# shows the reduced table for the given command only
display("Reduced table for the given command only")
display(table.drop(table.index[[1, 3]]))
  
# it gives none but it makes changes in the table
display(table.drop(['a', 'd'], inplace = True))
  
# final table
print("Final Table")
display(table)
  
# table after removing range of rows from 0 to 2(not included)
table.drop(table.index[:2], inplace = True)
  
display(table)

Output : 
 

 

Example 2 :
 

Python3




# creating a DataFrame   
data = {'Name' : ['Jai', 'Princi', 'Gaurav', 'Anuj'],
        'Age' : [27, 24, 22, 32],
        'Address' : ['Delhi', 'Kanpur', 'Allahabad', 'Kannauj'],
        'Qualification' : ['Msc', 'MA', 'MCA', 'Phd']}
table = pd.DataFrame(data)
 
# original DataFrame
display("Original DataFrame")
display(table)
 
# drop 2nd row
display("Dropped 2nd row")
display(table.drop(1))

Output : 
 

 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!