DP on Trees | Set-3 ( Diameter of N-ary Tree )

Given an N-ary tree T of N nodes, the task is to calculate the longest path between any two nodes(also known as the diameter of the tree).

Example 1:

Example 2:

Different approaches to solve these problems have already been discussed:

In this post, we will be discussing an approach which uses Dynamic Programming on Trees.

Prerequisites:

There are two possibilities for the diameter to exist:

  • Case 1: Suppose the diameter starts from a node and ends at some node in its subtree. Let’s say that there exist a node x such that the longest path starts from node x and goes into its subtree and ends at some node in the subtree itself. Let’s define this path length by dp1[x].
  • Case 2: Suppose the diameter or the longest path starts in subtree of a node x, passes through it and ends in it’s subtree. Let’s define this path by dp2[x].

If for all nodes x, we take a maximum of dp1[x], dp2[x], then we will get the diameter of the tree.

For the case-1, to find dp1[node], we need to find the maximum of all dp1[x], where x is the children of node. And dp1[node] will be equal to 1 + max(dp1[children1], dp1[children2], ..).

For the case-2, to find dp2[node], we need to find the two maximum of all dp1[x], where x is the children of node. And dp2[node] will be equal to 1 + max 2 of(dp1[children1], dp1[children2], ..).

We can easily run a DFS and find the maximum of both dp1[node] and dp2[node] for every to get the diameter of the tree.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ program to find diameter of a tree
// using DFS.
#include <bits/stdc++.h>
using namespace std;
  
int diameter = -1;
  
// Function to find the diameter of the tree
// using Dynamic Programming
int dfs(int node, int parent, int dp1[], int dp2[], list<int>* adj)
{
  
    // Store the first maximum and secondmax
    int firstmax = -1;
    int secondmax = -1;
  
    // Traverse for all children of node
    for (auto i = adj[node].begin(); i != adj[node].end(); ++i) {
        if (*i == parent)
            continue;
  
        // Call DFS function again
        dfs(*i, node, dp1, dp2, adj);
  
        // Find first max
        if (firstmax == -1) {
            firstmax = dp1[*i];
        }
        else if (dp1[*i] >= firstmax) // Secondmaximum
        {
            secondmax = firstmax;
            firstmax = dp1[*i];
        }
        else if (dp1[*i] > secondmax) // Find secondmaximum
        {
            secondmax = dp1[*i];
        }
    }
  
    // Base case for every node
    dp1[node] = 1;
    if (firstmax != -1) // Add
        dp1[node] += firstmax;
  
    // Find dp[2]
    if (secondmax != -1)
        dp2[node] = 1 + firstmax + secondmax;
  
    // Return maximum of both
    return max(dp1[node], dp2[node]);
}
  
// Driver Code
int main()
{
    int n = 5;
  
    /* Constructed tree is 
         
        / \ 
        2 3 
       / \ 
       4  5 */
    list<int>* adj = new list<int>[n + 1];
  
    /*create undirected edges */
    adj[1].push_back(2);
    adj[2].push_back(1);
    adj[1].push_back(3);
    adj[3].push_back(1);
    adj[2].push_back(4);
    adj[4].push_back(2);
    adj[2].push_back(5);
    adj[5].push_back(2);
  
    int dp1[n + 1], dp2[n + 1];
    memset(dp1, 0, sizeof dp1);
    memset(dp2, 0, sizeof dp2);
  
    // Find diameter by calling function
    cout << "Diameter of the given tree is "
         << dfs(1, 1, dp1, dp2, adj) << endl;
  
    return 0;
}

chevron_right


Python3

# Python3 program to find diameter
# of a tree using DFS.

# Function to find the diameter of the
# tree using Dynamic Programming
def dfs(node, parent, dp1, dp2, adj):

# Store the first maximum and secondmax
firstmax, secondmax = -1, -1

# Traverse for all children of node
for i in adj[node]:
if i == parent:
continue

# Call DFS function again
dfs(i, node, dp1, dp2, adj)

# Find first max
if firstmax == -1:
firstmax = dp1[i]

elif dp1[i] >= firstmax: # Secondmaximum
secondmax = firstmax
firstmax = dp1[i]

elif dp1[i] > secondmax: # Find secondmaximum
secondmax = dp1[i]

# Base case for every node
dp1[node] = 1
if firstmax != -1: # Add
dp1[node] += firstmax

# Find dp[2]
if secondmax != -1:
dp2[node] = 1 + firstmax + secondmax

# Return maximum of both
return max(dp1[node], dp2[node])

# Driver Code
if __name__ == “__main__”:

n, diameter = 5, -1

adj = [[] for i in range(n + 1)]

# create undirected edges
adj[1].append(2)
adj[2].append(1)
adj[1].append(3)
adj[3].append(1)
adj[2].append(4)
adj[4].append(2)
adj[2].append(5)
adj[5].append(2)

dp1 = [0] * (n + 1)
dp2 = [0] * (n + 1)

# Find diameter by calling function
print(“Diameter of the given tree is”,
dfs(1, 1, dp1, dp2, adj))

# This code is contributed by Rituraj Jain

Output:

Diameter of the given tree is 4


My Personal Notes arrow_drop_up

Striver(underscore)79 at Codechef and codeforces D

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : rituraj_jain