Skip to content
Related Articles

Related Articles

Double Order Traversal of a Binary Tree

View Discussion
Improve Article
Save Article
Like Article
  • Last Updated : 11 Oct, 2021

Given a Binary Tree consisting of N nodes, the task is to print its Double Order Traversal.

Double Order Traversal is a tree traversal technique in which every node is traversed twice in the following order: 

  • Visit the Node.
  • Traverse the Left Subtree.
  • Visit the Node.
  • Traverse the Right Subtree.

Examples:

Input:
        1
      /   \
     7     3
    / \   /
   4   5 6
Output: 1 7 4 4 7 5 5 1 3 6 6 3 

Input:
        1
      /   \
     7     3
    / \     \
   4   5     6
Output: 1 7 4 4 7 5 5 1 3 3 6 6

Approach: 
The idea is to perform Inorder Traversal recursively on the given Binary Tree and print the node value on visiting a vertex and after the recursive call to the left subtree during the traversal. 

Follow the steps below to solve the problem: 

  • Start Inorder traversal from the root. 
  • If the current node does not exist, simply return from it.
  • Otherwise:
    • Print the value of the current node.
    • Recursively traverse the left subtree.
    • Again, print the current node.
    • Recursively traverse the right subtree.
  • Repeat the above steps until all nodes in the tree are visited.

Below is the implementation of the above approach: 

C++




// C++ Program to implement
// the above approach
#include <iostream>
using namespace std;
 
// Node Structure
struct node {
    char data;
    struct node *left, *right;
};
 
// Function to create new node
struct node* newNode(char ch)
{
    // Allocate a new node in memory
    struct node* Node = new node();
    Node->data = ch;
    Node->left = NULL;
    Node->right = NULL;
    return Node;
}
 
// Function to print Double Order traversal
void doubleOrderTraversal(struct node* root)
{
    if (!root)
        return;
 
    // Print Node Value
    cout << root->data << " ";
 
    // Traverse Left Subtree
    doubleOrderTraversal(root->left);
 
    // Print Node Value
    cout << root->data << " ";
 
    // Traverse Right SubTree
    doubleOrderTraversal(root->right);
}
 
// Driver Code
int main()
{
    struct node* root = newNode('1');
    root->left = newNode('7');
    root->right = newNode('3');
    root->left->left = newNode('4');
    root->left->right = newNode('5');
    root->right->right = newNode('6');
 
    doubleOrderTraversal(root);
    return 0;
}

Java




// Java program to implement
// the above approach
class GFG{
 
// Node Structure
static class node
{
    char data;
    node left, right;
};
 
// Function to create new node
static node newNode(char ch)
{
     
    // Allocate a new node in memory
    node n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
 
// Function to print Double Order traversal
static void doubleOrderTraversal(node root)
{
    if (root == null)
        return;
 
    // Print Node Value
    System.out.print(root.data + " ");
 
    // Traverse Left Subtree
    doubleOrderTraversal(root.left);
 
    // Print Node Value
    System.out.print(root.data + " ");
 
    // Traverse Right SubTree
    doubleOrderTraversal(root.right);
}
 
// Driver Code
public static void main(String[] args)
{
    node root = newNode('1');
    root.left = newNode('7');
    root.right = newNode('3');
    root.left.left = newNode('4');
    root.left.right = newNode('5');
    root.right.right = newNode('6');
 
    doubleOrderTraversal(root);
}
}
 
// This code is contributed by gauravrajput1

Python3




# Python3 program to implement
# the above approach
 
# Node Structure
class Node:
 
    # Initialise new node
    def __init__(self, ch):
         
        self.data = ch
        self.left = None
        self.right = None
 
# Function to print Double Order traversal
def doubleOrderTraveersal(root):
     
    if not root:
        return
 
    # Print node value
    print(root.data, end = " ")
 
    # Traverse left subtree
    doubleOrderTraveersal(root.left)
 
    # Print node value
    print(root.data, end = " ")
 
    # Traverse right subtree
    doubleOrderTraveersal(root.right)
 
# Driver code
if __name__ == '__main__':
 
    root = Node(1)
    root.left = Node(7)
    root.right = Node(3)
    root.left.left = Node(4)
    root.left.right = Node(5)
    root.right.right = Node(6)
     
    doubleOrderTraveersal(root)
 
# This code is contributed by Shivam Singh

C#




// C# program to implement
// the above approach
using System;
class GFG{
 
// Node Structure
class node
{
    public char data;
    public node left, right;
};
 
// Function to create new node
static node newNode(char ch)
{
     
    // Allocate a new node in memory
    node n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
 
// Function to print Double Order traversal
static void doubleOrderTraversal(node root)
{
    if (root == null)
        return;
 
    // Print Node Value
    Console.Write(root.data + " ");
 
    // Traverse Left Subtree
    doubleOrderTraversal(root.left);
 
    // Print Node Value
    Console.Write(root.data + " ");
 
    // Traverse Right SubTree
    doubleOrderTraversal(root.right);
}
 
// Driver Code
public static void Main(String[] args)
{
    node root = newNode('1');
    root.left = newNode('7');
    root.right = newNode('3');
    root.left.left = newNode('4');
    root.left.right = newNode('5');
    root.right.right = newNode('6');
 
    doubleOrderTraversal(root);
}
}
 
// This code is contributed by gauravrajput1

Javascript




<script>
 
// Javascript program to implement
// the above approach
 
// Node Structure
class node
{
    constructor()
    {
        this.data = 0;
        this.left = null;
        this.right = null;
    }
};
 
// Function to create new node
function newNode(ch)
{
     
    // Allocate a new node in memory
    var n = new node();
    n.data = ch;
    n.left = null;
    n.right = null;
    return n;
}
 
// Function to print Double Order traversal
function doubleOrderTraversal(root)
{
    if (root == null)
        return;
 
    // Print Node Value
    document.write(root.data + " ");
 
    // Traverse Left Subtree
    doubleOrderTraversal(root.left);
 
    // Print Node Value
    document.write(root.data + " ");
 
    // Traverse Right SubTree
    doubleOrderTraversal(root.right);
}
 
// Driver Code
var root = newNode('1');
root.left = newNode('7');
root.right = newNode('3');
root.left.left = newNode('4');
root.left.right = newNode('5');
root.right.right = newNode('6');
doubleOrderTraversal(root);
 
 
</script>

Output: 

1 7 4 4 7 5 5 1 3 3 6 6

 

Time Complexity: O(N) 
Auxiliary Space: O(1)
 


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!