Skip to content
Related Articles

Related Articles

Improve Article

Doolittle Algorithm : LU Decomposition

  • Difficulty Level : Easy
  • Last Updated : 12 Jun, 2021

In numerical analysis and linear algebra, LU decomposition (where ‘LU’ stands for ‘lower upper’, and also called LU factorization) factors a matrix as the product of a lower triangular matrix and an upper triangular matrix. Computers usually solve square systems of linear equations using the LU decomposition, and it is also a key step when inverting a matrix, or computing the determinant of a matrix. The LU decomposition was introduced by mathematician Tadeusz Banachiewicz in 1938.

Let A be a square matrix. An LU factorization refers to the factorization of A, with proper row and/or column orderings or permutations, into two factors, a lower triangular matrix L and an upper triangular matrix U, A=LU.
 

Doolittle Algorithm
It is always possible to factor a square matrix into a lower triangular matrix and an upper triangular matrix. That is, [A] = [L][U]
Doolittle’s method provides an alternative way to factor A into an LU decomposition without going through the hassle of Gaussian Elimination.
For a general n×n matrix A, we assume that an LU decomposition exists, and write the form of L and U explicitly. We then systematically solve for the entries in L and U from the equations that result from the multiplications necessary for A=LU.

Terms of U matrix are given by:



\forall j\\ i=0 \rightarrow U_{ij} = A_{ij}\\ i>0 \rightarrow U_{ij} = A_{ij} - \sum_{k=0}^{i-1}L_{ik}U_{kj}           

And the terms for L matrix:
 \forall i\\ j=0 \rightarrow L_{ij} = \frac{A_{ij}}{U_{jj}}\\ j>0 \rightarrow L_{ij} = \frac{A_{ij} - \sum_{k=0}^{j-1}L_{ik}U_{kj}}{U_{jj}}

Example

Input : 

Output :

C++




// C++ Program to decompose a matrix into
// lower and upper triangular matrix
#include <bits/stdc++.h>
using namespace std;
 
const int MAX = 100;
 
void luDecomposition(int mat[][MAX], int n)
{
    int lower[n][n], upper[n][n];
    memset(lower, 0, sizeof(lower));
    memset(upper, 0, sizeof(upper));
 
    // Decomposing matrix into Upper and Lower
    // triangular matrix
    for (int i = 0; i < n; i++)
    {
        // Upper Triangular
        for (int k = i; k < n; k++)
        {
            // Summation of L(i, j) * U(j, k)
            int sum = 0;
            for (int j = 0; j < i; j++)
                sum += (lower[i][j] * upper[j][k]);
 
            // Evaluating U(i, k)
            upper[i][k] = mat[i][k] - sum;
        }
 
        // Lower Triangular
        for (int k = i; k < n; k++)
        {
            if (i == k)
                lower[i][i] = 1; // Diagonal as 1
            else
            {
                // Summation of L(k, j) * U(j, i)
                int sum = 0;
                for (int j = 0; j < i; j++)
                    sum += (lower[k][j] * upper[j][i]);
 
                // Evaluating L(k, i)
                lower[k][i]
                    = (mat[k][i] - sum) / upper[i][i];
            }
        }
    }
 
    // setw is for displaying nicely
    cout << setw(6)
         << "      Lower Triangular"
         << setw(32)
         << "Upper Triangular" << endl;
 
    // Displaying the result :
    for (int i = 0; i < n; i++)
    {
        // Lower
        for (int j = 0; j < n; j++)
            cout << setw(6) << lower[i][j] << "\t";
        cout << "\t";
 
        // Upper
        for (int j = 0; j < n; j++)
            cout << setw(6) << upper[i][j] << "\t";
        cout << endl;
    }
}
 
// Driver code
int main()
{
    int mat[][MAX]
        = { { 2, -1, -2 }, { -4, 6, 3 }, { -4, -2, 8 } };
 
    luDecomposition(mat, 3);
    return 0;
}

Java




// Java Program to decompose a matrix into
// lower and upper triangular matrix
class GFG {
 
    static int MAX = 100;
    static String s = "";
    static void luDecomposition(int[][] mat, int n)
    {
        int[][] lower = new int[n][n];
        int[][] upper = new int[n][n];
 
        // Decomposing matrix into Upper and Lower
        // triangular matrix
        for (int i = 0; i < n; i++)
        {
            // Upper Triangular
            for (int k = i; k < n; k++)
            {
                // Summation of L(i, j) * U(j, k)
                int sum = 0;
                for (int j = 0; j < i; j++)
                    sum += (lower[i][j] * upper[j][k]);
 
                // Evaluating U(i, k)
                upper[i][k] = mat[i][k] - sum;
            }
 
            // Lower Triangular
            for (int k = i; k < n; k++)
            {
                if (i == k)
                    lower[i][i] = 1; // Diagonal as 1
                else
                {
                    // Summation of L(k, j) * U(j, i)
                    int sum = 0;
                    for (int j = 0; j < i; j++)
                        sum += (lower[k][j] * upper[j][i]);
 
                    // Evaluating L(k, i)
                    lower[k][i]
                        = (mat[k][i] - sum) / upper[i][i];
                }
            }
        }
 
        // setw is for displaying nicely
        System.out.println(setw(2) + "     Lower Triangular"
                           + setw(10) + "Upper Triangular");
 
        // Displaying the result :
        for (int i = 0; i < n; i++)
        {
            // Lower
            for (int j = 0; j < n; j++)
                System.out.print(setw(4) + lower[i][j]
                                 + "\t");
            System.out.print("\t");
 
            // Upper
            for (int j = 0; j < n; j++)
                System.out.print(setw(4) + upper[i][j]
                                 + "\t");
            System.out.print("\n");
        }
    }
    static String setw(int noOfSpace)
    {
        s = "";
        for (int i = 0; i < noOfSpace; i++)
            s += " ";
        return s;
    }
 
    // Driver code
    public static void main(String arr[])
    {
        int mat[][] = { { 2, -1, -2 },
                        { -4, 6, 3 },
                        { -4, -2, 8 } };
 
        luDecomposition(mat, 3);
    }
}
 
/* This code contributed by PrinciRaj1992 */

Python3




# Python3 Program to decompose
# a matrix into lower and
# upper triangular matrix
MAX = 100
 
 
def luDecomposition(mat, n):
 
    lower = [[0 for x in range(n)]
             for y in range(n)]
    upper = [[0 for x in range(n)]
             for y in range(n)]
 
    # Decomposing matrix into Upper
    # and Lower triangular matrix
    for i in range(n):
 
        # Upper Triangular
        for k in range(i, n):
 
            # Summation of L(i, j) * U(j, k)
            sum = 0
            for j in range(i):
                sum += (lower[i][j] * upper[j][k])
 
            # Evaluating U(i, k)
            upper[i][k] = mat[i][k] - sum
 
        # Lower Triangular
        for k in range(i, n):
            if (i == k):
                lower[i][i] = 1  # Diagonal as 1
            else:
 
                # Summation of L(k, j) * U(j, i)
                sum = 0
                for j in range(i):
                    sum += (lower[k][j] * upper[j][i])
 
                # Evaluating L(k, i)
                lower[k][i] = int((mat[k][i] - sum) /
                                  upper[i][i])
 
    # setw is for displaying nicely
    print("Lower Triangular\t\tUpper Triangular")
 
    # Displaying the result :
    for i in range(n):
 
        # Lower
        for j in range(n):
            print(lower[i][j], end="\t")
        print("", end="\t")
 
        # Upper
        for j in range(n):
            print(upper[i][j], end="\t")
        print("")
 
 
# Driver code
mat = [[2, -1, -2],
       [-4, 6, 3],
       [-4, -2, 8]]
 
luDecomposition(mat, 3)
 
# This code is contributed by mits

C#




// C# Program to decompose a matrix into
// lower and upper triangular matrix
using System;
 
class GFG {
 
    static int MAX = 100;
    static String s = "";
    static void luDecomposition(int[, ] mat, int n)
    {
        int[, ] lower = new int[n, n];
        int[, ] upper = new int[n, n];
 
        // Decomposing matrix into Upper and Lower
        // triangular matrix
        for (int i = 0; i < n; i++)
        {
            // Upper Triangular
            for (int k = i; k < n; k++)
            {
                // Summation of L(i, j) * U(j, k)
                int sum = 0;
                for (int j = 0; j < i; j++)
                    sum += (lower[i, j] * upper[j, k]);
 
                // Evaluating U(i, k)
                upper[i, k] = mat[i, k] - sum;
            }
 
            // Lower Triangular
            for (int k = i; k < n; k++)
            {
                if (i == k)
                    lower[i, i] = 1; // Diagonal as 1
                else
                {
                    // Summation of L(k, j) * U(j, i)
                    int sum = 0;
                    for (int j = 0; j < i; j++)
                        sum += (lower[k, j] * upper[j, i]);
 
                    // Evaluating L(k, i)
                    lower[k, i]
                        = (mat[k, i] - sum) / upper[i, i];
                }
            }
        }
 
        // setw is for displaying nicely
        Console.WriteLine(setw(2) + "     Lower Triangular"
                          + setw(10) + "Upper Triangular");
 
        // Displaying the result :
        for (int i = 0; i < n; i++)
        {
            // Lower
            for (int j = 0; j < n; j++)
                Console.Write(setw(4) + lower[i, j] + "\t");
            Console.Write("\t");
 
            // Upper
            for (int j = 0; j < n; j++)
                Console.Write(setw(4) + upper[i, j] + "\t");
            Console.Write("\n");
        }
    }
    static String setw(int noOfSpace)
    {
        s = "";
        for (int i = 0; i < noOfSpace; i++)
            s += " ";
        return s;
    }
 
    // Driver code
    public static void Main(String[] arr)
    {
        int[, ] mat = { { 2, -1, -2 },
                        { -4, 6, 3 },
                        { -4, -2, 8 } };
 
        luDecomposition(mat, 3);
    }
}
 
// This code is contributed by Princi Singh

PHP




<?php
// PHP Program to decompose
// a matrix into lower and
// upper triangular matrix
$MAX = 100;
 
function luDecomposition($mat, $n)
{
    $lower;
    $upper;
    for($i = 0; $i < $n; $i++)
    for($j = 0; $j < $n; $j++)
    {
        $lower[$i][$j]= 0;
        $upper[$i][$j]= 0;
    }
    // Decomposing matrix
    // into Upper and Lower
    // triangular matrix
    for ($i = 0; $i < $n; $i++)
    {
 
        // Upper Triangular
        for ($k = $i; $k < $n; $k++)
        {
 
            // Summation of
            // L(i, j) * U(j, k)
            $sum = 0;
            for ($j = 0; $j < $i; $j++)
                $sum += ($lower[$i][$j] *
                         $upper[$j][$k]);
 
            // Evaluating U(i, k)
            $upper[$i][$k] = $mat[$i][$k] - $sum;
        }
 
        // Lower Triangular
        for ($k = $i; $k < $n; $k++)
        {
            if ($i == $k)
                $lower[$i][$i] = 1; // Diagonal as 1
            else
            {
 
                // Summation of L(k, j) * U(j, i)
                $sum = 0;
                for ($j = 0; $j < $i; $j++)
                    $sum += ($lower[$k][$j] *
                             $upper[$j][$i]);
 
                // Evaluating L(k, i)
                $lower[$k][$i] = (int)(($mat[$k][$i] -
                                $sum) / $upper[$i][$i]);
            }
        }
    }
 
    // setw is for
    // displaying nicely
    echo "\t\tLower Triangular";
    echo "\t\t\tUpper Triangular\n";
 
    // Displaying the result :
    for ($i = 0; $i < $n; $i++)
    {
        // Lower
        for ($j = 0; $j < $n; $j++)
            echo "\t" . $lower[$i][$j] . "\t";
        echo "\t";
 
        // Upper
        for ($j = 0; $j < $n; $j++)
        echo $upper[$i][$j] . "\t";
        echo "\n";
    }
}
 
// Driver code
$mat = array(array(2, -1, -2),
             array(-4, 6, 3),
             array(-4, -2, 8));
 
luDecomposition($mat, 3);
 
// This code is contributed by mits
?>

Javascript




<script>
 
// Javascript Program to decompose a matrix
// into lower and upper triangular matrix   
// function MAX = 100;
var s = "";
 
function luDecomposition(mat, n)
{
    var lower = Array(n).fill(0).map(
           x => Array(n).fill(0));
    var upper = Array(n).fill(0).map(
           x => Array(n).fill(0));
 
    // Decomposing matrix into Upper and
    // Lower triangular matrix
    for(var i = 0; i < n; i++)
    {
         
        // Upper Triangular
        for(var k = i; k < n; k++)
        {
             
            // Summation of L(i, j) * U(j, k)
            var sum = 0;
            for(var j = 0; j < i; j++)
                sum += (lower[i][j] * upper[j][k]);
 
            // Evaluating U(i, k)
            upper[i][k] = mat[i][k] - sum;
        }
 
        // Lower Triangular
        for(var k = i; k < n; k++)
        {
            if (i == k)
             
                // Diagonal as 1
                lower[i][i] = 1;
            else
            {
                 
                // Summation of L(k, j) * U(j, i)
                var sum = 0;
                for(var j = 0; j < i; j++)
                    sum += (lower[k][j] * upper[j][i]);
 
                // Evaluating L(k, i)
                lower[k][i] = parseInt((mat[k][i] - sum) /
                                      upper[i][i]);
            }
        }
    }
 
    // Setw is for displaying nicely
    document.write(setw(2) + "Lower Triangular" +
                   setw(10) + "Upper Triangular<br>");
 
    // Displaying the result :
    for(var i = 0; i < n; i++)
    {
        
        // Lower
        for(var j = 0; j < n; j++)
            document.write(setw(4) +
                           lower[i][j] + "\t");
                            
        document.write(setw(10));
 
        // Upper
        for(var j = 0; j < n; j++)
            document.write(setw(4) +
                           upper[i][j] + "\t");
                            
        document.write("<br>");
    }
}
 
function setw(noOfSpace)
{
    var s = "";
    for(i = 0; i < noOfSpace; i++)
        s += " ";
         
    return s;
}
 
// Driver code
var mat = [ [ 2, -1, -2 ],
            [ -4, 6, 3 ],
            [ -4, -2, 8 ] ];
 
luDecomposition(mat, 3);
 
// This code is contributed by Amit Katiyar
 
</script>

Output: 

Lower Triangular    Upper Triangular
1    0      0       2    -1     -2    
-2   1      0       0     4     -1    
-2  -1      1       0     0      3    

This article is contributed by Shubham Rana. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.

Attention reader! Don’t stop learning now. Get hold of all the important mathematical concepts for competitive programming with the Essential Maths for CP Course at a student-friendly price. To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :