Given a number n, find the nth Dodecagonal number.Dodecagonal numbers represent Dodecagonal (A polygon with 12 sides).
Some of the Dodecagonal numbers are:
1, 12, 33, 64, 105, 156, 217, 288, 369, 460, 561, 672, 793, 924………………………..
Examples :
Input : n = 4
Output : 64
Input : n = 9
Output : 369
Formula of nth Term of Dodecagonal number :
n-th Dodecagonal number = 5n2 - 4n
Below is the implementation for nth Dodecagonal Number:
C++
#include <bits/stdc++.h>
using namespace std;
int Dodecagonal_number( int n)
{
return 5 * n * n - 4 * n;
}
int main()
{
int n = 7;
cout << Dodecagonal_number(n) << endl;
n = 12;
cout << Dodecagonal_number(n) << endl;
return 0;
}
|
C
#include <stdio.h>
int Dodecagonal_number( int n)
{
return 5 * n * n - 4 * n;
}
int main()
{
int n = 7;
printf ( "%d\n" ,Dodecagonal_number(n));
n = 12;
printf ( "%d\n" ,Dodecagonal_number(n));
return 0;
}
|
Java
import java.util.*;
class GFG
{
static int Dodecagonal_number( int n)
{
return 5 * n * n - 4 * n;
}
public static void main(String[] args)
{
int n = 7 ;
System.out.println(Dodecagonal_number(n));
n = 12 ;
System.out.println(Dodecagonal_number(n));
}
}
|
Python3
def Dodecagonal_number(n):
return 5 * n * n - 4 * n
n = 7
print (Dodecagonal_number(n))
n = 12
print (Dodecagonal_number(n))
|
C#
using System;
class GFG {
static int Dodecagonal_number( int n)
{
return 5 * n * n - 4 * n;
}
static void Main()
{
int n = 7;
Console.WriteLine(Dodecagonal_number(n));
n = 12;
Console.WriteLine(Dodecagonal_number(n));
}
}
|
PHP
<?php
function Dodecagonal_number( $n )
{
return 5 * $n * $n - 4 * $n ;
}
$n = 7;
echo Dodecagonal_number( $n ), "\n" ;
$n = 12;
echo Dodecagonal_number( $n ), "\n" ;
?>
|
Javascript
<script>
function Dodecagonal_number(n)
{
return 5 * n * n - 4 * n;
}
let n = 7;
document.write(Dodecagonal_number(n) + "<br>" );
n = 12;
document.write(Dodecagonal_number(n) + "<br>" );
</script>
|
Time Complexity: O(1)
Auxiliary Space: O(1)
References: https://en.wikipedia.org/wiki/Dodecagonal_number