Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Check if a number is multiple of 9 using bitwise operators

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Given a number n, write a function that returns true if n is divisible by 9, else false. The most simple way to check for n’s divisibility by 9 is to do n%9. 
Another method is to sum the digits of n. If sum of digits is multiple of 9, then n is multiple of 9. 
The above methods are not bitwise operators based methods and require use of % and /. 
The bitwise operators are generally faster than modulo and division operators. Following is a bitwise operator based method to check divisibility by 9. 
 

C++




// C++ program to check if a number
// is multiple of 9 using bitwise operators
#include <bits/stdc++.h>
using namespace std;
 
// Bitwise operator based function to check divisibility by 9
bool isDivBy9(int n)
{
    // Base cases
    if (n == 0 || n == 9)
        return true;
    if (n < 9)
        return false;
 
    // If n is greater than 9, then recur for [floor(n/9) - n%8]
    return isDivBy9((int)(n >> 3) - (int)(n & 7));
}
 
// Driver program to test above function
int main()
{
    // Let us print all multiples of 9 from 0 to 100
    // using above method
    for (int i = 0; i < 100; i++)
        if (isDivBy9(i))
            cout << i << " ";
    return 0;
}

Java




// Java program to check if a number
// is multiple of 9 using bitwise operators
import java.lang.*;
 
class GFG {
 
    // Bitwise operator based function
    // to check divisibility by 9
    static boolean isDivBy9(int n)
    {
 
        // Base cases
        if (n == 0 || n == 9)
            return true;
        if (n < 9)
            return false;
 
        // If n is greater than 9, then
        // recur for [floor(n/9) - n%8]
        return isDivBy9((int)(n >> 3) - (int)(n & 7));
    }
 
    // Driver code
    public static void main(String arg[])
    {
 
        // Let us print all multiples of 9 from
        // 0 to 100 using above method
        for (int i = 0; i < 100; i++)
            if (isDivBy9(i))
                System.out.print(i + " ");
    }
}
 
// This code is contributed by Anant Agarwal.

Python3




# Bitwise operator based
# function to check divisibility by 9
 
def isDivBy9(n):
 
    # Base cases
    if (n == 0 or n == 9):
        return True
    if (n < 9):
        return False
  
    # If n is greater than 9,
    # then recur for [floor(n / 9) - n % 8]
    return isDivBy9((int)(n>>3) - (int)(n&7))
 
# Driver code
 
# Let us print all multiples
# of 9 from 0 to 100
# using above method
for i in range(100):
    if (isDivBy9(i)):
        print(i, " ", end ="")
 
# This code is contributed
# by Anant Agarwal.

C#




// C# program to check if a number
// is multiple of 9 using bitwise operators
using System;
 
class GFG {
 
    // Bitwise operator based function
    // to check divisibility by 9
    static bool isDivBy9(int n)
    {
        // Base cases
        if (n == 0 || n == 9)
            return true;
        if (n < 9)
            return false;
 
        // If n is greater than 9, then
        // recur for [floor(n/9) - n%8]
        return isDivBy9((int)(n >> 3) - (int)(n & 7));
    }
 
    // Driver code
    public static void Main()
    {
        // Let us print all multiples of 9 from
        // 0 to 100 using above method
        for (int i = 0; i < 100; i++)
            if (isDivBy9(i))
                Console.Write(i + " ");
    }
}
 
// This code is contributed by nitin mittal.

PHP




<?php
// PHP program to check if a number
// is multiple of 9 using bitwise
// operators
 
// Bitwise operator based function
// to check divisibility by 9
function isDivBy9($n)
{
     
    // Base cases
    if ($n == 0 || $n == 9)
        return true;
    if ($n < 9)
        return false;
 
    // If n is greater than 9,
    // then recur for [floor(n/9) -
    // n%8]
    return isDivBy9(($n >> 3) -
                    ($n & 7));
}
 
    // Driver Code
    // Let us print all multiples
    // of 9 from 0 to 100
    // using above method
    for ($i = 0; $i < 100; $i++)
        if (isDivBy9($i))
            echo $i ," ";
             
// This code is contributed by nitin mittal
?>

Javascript




<script>
// javascript program to check if a number
// is multiple of 9 using bitwise operators
 
// Bitwise operator based function
// to check divisibility by 9
function isDivBy9(n)
{
 
    // Base cases
    if (n == 0 || n == 9)
        return true;
    if (n < 9)
        return false;
 
    // If n is greater than 9, then
    // recur for [floor(n/9) - n%8]
    return isDivBy9(parseInt(n >> 3) - parseInt(n & 7));
}
 
// Driver code
 
    // Let us print all multiples of 9 from
// 0 to 100 using above method
for (i = 0; i < 100; i++)
    if (isDivBy9(i))
        document.write(i + " ");
 
// This code is contributed by Princi Singh
</script>

Output: 

0 9 18 27 36 45 54 63 72 81 90 99

Time Complexity: O(log n)

Auxiliary Space: O(logn)
How does this work? 
n/9 can be written in terms of n/8 using the following simple formula. 

n/9 = n/8 - n/72

Since we need to use bitwise operators, we get the value of floor(n/8) using n>>3 and get value of n%8 using n&7. We need to write above expression in terms of floor(n/8) and n%8
n/8 is equal to “floor(n/8) + (n%8)/8”. Let us write the above expression in terms of floor(n/8) and n%8

n/9 = floor(n/8) + (n%8)/8 - [floor(n/8) + (n%8)/8]/9
n/9 = floor(n/8) - [floor(n/8) - 9(n%8)/8 + (n%8)/8]/9
n/9 = floor(n/8) - [floor(n/8) - n%8]/9

From above equation, n is a multiple of 9 only if the expression floor(n/8) – [floor(n/8) – n%8]/9 is an integer. This expression can only be an integer if the sub-expression [floor(n/8) – n%8]/9 is an integer. The subexpression can only be an integer if [floor(n/8) – n%8] is a multiple of 9. So the problem reduces to a smaller value which can be written in terms of bitwise operators.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above
 


My Personal Notes arrow_drop_up
Last Updated : 26 May, 2022
Like Article
Save Article
Similar Reads
Related Tutorials