Given a number n, write a function that returns true if n is divisible by 9, else false. The most simple way to check for n’s divisibility by 9 is to do n%9.

Another method is to sum the digits of n. If sum of digits is multiple of 9, then n is multiple of 9.

The above methods are not bitwise operators based methods and require use of % and /.

The bitwise operators are generally faster than modulo and division operators. Following is a bitwise operator based method to check divisibility by 9.

## C++

// C++ program to check if a number // is multiple of 9 using bitwise operators #include <bits/stdc++.h> using namespace std; // Bitwise operator based function to check divisibility by 9 bool isDivBy9(int n) { // Base cases if (n == 0 || n == 9) return true; if (n < 9) return false; // If n is greater than 9, then recur for [floor(n/9) - n%8] return isDivBy9((int)(n >> 3) - (int)(n & 7)); } // Driver program to test above function int main() { // Let us print all multiples of 9 from 0 to 100 // using above method for (int i = 0; i < 100; i++) if (isDivBy9(i)) cout << i << " "; return 0; }

## Java

// Java program to check if a number // is multiple of 9 using bitwise operators import java.lang.*; class GFG { // Bitwise operator based function // to check divisibility by 9 static boolean isDivBy9(int n) { // Base cases if (n == 0 || n == 9) return true; if (n < 9) return false; // If n is greater than 9, then // recur for [floor(n/9) - n%8] return isDivBy9((int)(n >> 3) - (int)(n & 7)); } // Driver code public static void main(String arg[]) { // Let us print all multiples of 9 from // 0 to 100 using above method for (int i = 0; i < 100; i++) if (isDivBy9(i)) System.out.print(i + " "); } } // This code is contributed by Anant Agarwal.

## Python3

# Bitwise operator based # function to check divisibility by 9 def isDivBy9(n): # Base cases if (n == 0 or n == 9): return True if (n < 9): return False # If n is greater than 9, # then recur for [floor(n / 9) - n % 8] return isDivBy9((int)(n>>3) - (int)(n&7)) # Driver code # Let us print all multiples # of 9 from 0 to 100 # using above method for i in range(100): if (isDivBy9(i)): print(i, " ", end ="") # This code is contributed # by Anant Agarwal.

## C#

// C# program to check if a number // is multiple of 9 using bitwise operators using System; class GFG { // Bitwise operator based function // to check divisibility by 9 static bool isDivBy9(int n) { // Base cases if (n == 0 || n == 9) return true; if (n < 9) return false; // If n is greater than 9, then // recur for [floor(n/9) - n%8] return isDivBy9((int)(n >> 3) - (int)(n & 7)); } // Driver code public static void Main() { // Let us print all multiples of 9 from // 0 to 100 using above method for (int i = 0; i < 100; i++) if (isDivBy9(i)) Console.Write(i + " "); } } // This code is contributed by nitin mittal.

## PHP

<?php // PHP program to check if a number // is multiple of 9 using bitwise // operators // Bitwise operator based function // to check divisibility by 9 function isDivBy9($n) { // Base cases if ($n == 0 || $n == 9) return true; if ($n < 9) return false; // If n is greater than 9, // then recur for [floor(n/9) - // n%8] return isDivBy9(($n >> 3) - ($n & 7)); } // Driver Code // Let us print all multiples // of 9 from 0 to 100 // using above method for ($i = 0; $i < 100; $i++) if (isDivBy9($i)) echo $i ," "; // This code is contributed by nitin mittal ?>

Output:

0 9 18 27 36 45 54 63 72 81 90 99

**How does this work?**

*n/9* can be written in terms of *n/8* using the following simple formula.

n/9 = n/8 - n/72

Since we need to use bitwise operators, we get the value of *floor(n/8)* using *n>>3* and get value of *n%8* using *n&7*. We need to write above expression in terms of *floor(n/8)* and *n%8*.

*n/8* is equal to *“floor(n/8) + (n%8)/8”*. Let us write the above expression in terms of *floor(n/8)* and *n%8*

n/9 = floor(n/8) + (n%8)/8 - [floor(n/8) + (n%8)/8]/9 n/9 = floor(n/8) - [floor(n/8) - 9(n%8)/8 + (n%8)/8]/9 n/9 = floor(n/8) - [floor(n/8) - n%8]/9

From above equation, *n* is a multiple of *9* only if the expression *floor(n/8) – [floor(n/8) – n%8]/9* is an integer. This expression can only be an integer if the sub-expression* [floor(n/8) – n%8]/9* is an integer. The subexpression can only be an integer if *[floor(n/8) – n%8] *is a multiple of *9*. So the problem reduces to a smaller value which can be written in terms of bitwise operators.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

**Practice Tags :**