Divide the two given numbers by their common divisors

Given two numbers A and B, the task is to Divide the two numbers A and B by their common divisors. The numbers A and B is less than 10^8.

Examples:

Input: A = 10, B = 15
Output: A = 2, B = 3
The common factors are 1, 5

Input: A = 100, B = 150
Output: A = 2, B = 3


Naive Approach: Iterate from i = 1 to minimum of A and B and check whether i is a factor of both A and B. If i is a factor of A and B then Divide the two numbers A and B by i.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
// print the numbers after dividing
// them by their common factors
void divide(int a, int b)
{
    // iterate from 1 to minimum of a and b
    for (int i = 2; i <= min(a, b); i++) {
  
        // if i is the common factor
        // of both the numbers
        while (a % i == 0 && b % i == 0) {
            a = a / i;
            b = b / i;
        }
    }
  
    cout << "A = " << a << ", B = " << b << endl;
}
  
// Driver code
int main()
{
    int A = 10, B = 15;
  
    // divide A and B by their common factors
    divide(A, B);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
import java.util.*;
  
class solution
{
  
// print the numbers after dividing
// them by their common factors
static void divide(int a, int b)
{
    // iterate from 1 to minimum of a and b
    for (int i = 2; i <= Math.min(a, b); i++) {
  
        // if i is the common factor
        // of both the numbers
        while (a % i == 0 && b % i == 0) {
            a = a / i;
            b = b / i;
        }
    }
  
    System.out.println("A = "+a+", B = "+b);
}
  
// Driver code
public static void main(String args[])
{
    int A = 10, B = 15;
  
    // divide A and B by their common factors
    divide(A, B);
  
}
}
  
// This code is contributed by
// Surendra_Gangwar

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach 
  
# print the numbers after dividing 
# them by their common factors 
def divide(a, b) :
      
    # iterate from 1 to minimum of a and b 
    for i in range(2, min(a, b) + 1) : 
  
        # if i is the common factor 
        # of both the numbers 
        while (a % i == 0 and b % i == 0) :
            a = a // i
            b = b // i
  
    print("A =", a, ", B =", b) 
  
# Driver code 
if __name__ == "__main__" :
  
    A, B = 10, 15
  
    # divide A and B by their 
    # common factors 
    divide(A, B) 
      
# This code is contributed by Ryuga

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach
using System;
  
class GFG
{
      
// print the numbers after dividing
// them by their common factors
static void divide(int a, int b)
{
    // iterate from 1 to minimum of a and b
    for (int i = 2; i <= Math.Min(a, b); i++)
    {
  
        // if i is the common factor
        // of both the numbers
        while (a % i == 0 && b % i == 0)
        {
            a = a / i;
            b = b / i;
        }
    }
    Console.WriteLine("A = "+a+", B = "+b);
}
  
// Driver code
static public void Main ()
{
    int A = 10, B = 15;
  
    // divide A and B by their common factors
    divide(A, B);
}
}
  
// This code is contributed by ajit.

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of above approach
// print the numbers after dividing
// them by their common factors
  
function divide($a, $b)
{
    // iterate from 1 to minimum of a and b
    for ($i = 2; $i <= min($a, $b); $i++) 
    {
  
        // if i is the common factor
        // of both the numbers
        while ($a % $i == 0 && 
                $b % $i == 0) 
        {
            $a = $a / $i;
            $b = $b / $i;
        }
    }
    echo "A = ", $a, ", B = ", $b, "\n";
}
  
// Driver code
$A = 10;
$B = 15;
  
// divide A and B by their common factors
divide($A, $B);
  
// This code is contributed by Sach_Code
?>

chevron_right


Output:

A = 2, B = 3

An efficient approach is to use the same concept used in Common divisors of two numbers. Calculate the greatest common divisor (gcd) of given two numbers, and then divide the numbers by their gcd.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of above approach
#include <bits/stdc++.h>
using namespace std;
  
// Function to calculate gcd of two numbers
int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
  
// Function to calculate all common divisors
// of two given numbers
// a, b --> input integer numbers
void commDiv(int a, int b)
{
    // find gcd of a, b
    int n = gcd(a, b);
  
    a = a / n;
    b = b / n;
  
    cout << "A = " << a << ", B = " << b << endl;
}
  
// Driver code
int main()
{
    int a = 10, b = 15;
    commDiv(a, b);
  
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of above approach
class GFG
{
      
// Function to calculate gcd 
// of two numbers
static int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
  
// Function to calculate all common 
// divisors of two given numbers
// a, b --> input integer numbers
static void commDiv(int a, int b)
{
    // find gcd of a, b
    int n = gcd(a, b);
  
    a = a / n;
    b = b / n;
  
    System.out.println("A = " + a + 
                       ", B = " + b);
}
  
// Driver code
public static void main(String[] args)
{
    int a = 10, b = 15;
    commDiv(a, b);
}
  
// This code is contributed
// by Code_Mech

chevron_right


Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation of above approach
  
# Function to calculate gcd of two numbers
def gcd(a, b):
    if (a == 0):
        return b
    return gcd(b % a, a)
  
# Function to calculate all common 
# divisors of two given numbers
# a, b --> input eger numbers
def commDiv(a, b):
      
    # find gcd of a, b
    n = gcd(a, b)
  
    a = a // n
    b = b // n
  
    print("A =", a, ", B =", b)
  
# Driver code
a, b = 10, 15
commDiv(a, b)
  
# This code is contributed
# by mohit kumar

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of above approach
using System;
  
class GFG
{
      
// Function to calculate gcd 
// of two numbers
static int gcd(int a, int b)
{
    if (a == 0)
        return b;
    return gcd(b % a, a);
}
  
// Function to calculate all common 
// divisors of two given numbers
// a, b --> input integer numbers
static void commDiv(int a, int b)
{
    // find gcd of a, b
    int n = gcd(a, b);
  
    a = a / n;
    b = b / n;
  
    Console.WriteLine("A = " + a + 
                    ", B = " + b);
}
  
// Driver code
public static void Main()
{
    int a = 10, b = 15;
    commDiv(a, b);
}
  
// This code is contributed
// by Code_Mech

chevron_right


PHP

filter_none

edit
close

play_arrow

link
brightness_4
code

<?php
// PHP implementation of above approach
  
// Function to calculate gcd of 
// two numbers
function gcd($a, $b)
{
    if ($a == 0)
        return $b;
    return gcd($b % $a, $a);
}
  
// Function to calculate all common 
// divisors of two given numbers
// a, b --> input integer numbers
function commDiv($a, $b)
{
    // find gcd of a, b
    $n = gcd($a, $b);
  
    $a = (int)($a / $n);
    $b = (int)($b / $n);
  
    echo "A = " . $a
         ", B = " . $b . "\n";
}
  
// Driver code
$a = 10;
$b = 15;
commDiv($a, $b);
  
// This code is contributed by mits
?>

chevron_right


Output:

A = 2, B = 3

Time comlplexity : O(n)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.