Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Divide the array into minimum number of sub-arrays having unique elements

  • Last Updated : 25 May, 2021

Given an array arr. The task is to divide the array into the minimum number of subarrays containing unique elements and return the count of such subarrays. 
Note: An array element cannot be present in more than one subarray.
Examples : 
 

Input : arr[] = {1, 2, 1, 1, 2, 3}
Output : 3
Explanation : The subarrays having unique elements are 
{ 1, 2 }, { 1 }, and { 1, 2, 3 }

Input : arr[] = {1, 2, 3, 4, 5}
Output : 1
Explanation : The subarray having unique elements is 
{ 1, 2, 3, 4, 5 }

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Approach: 
The idea is to maintain a set while traversing the array. While traversing, if an element is already found in the set, then increase the count of subarray by 1 as we have to include the current element in the next subarray and clear the set for new subarray. Then, proceed for the complete array in a self-similar manner. The variable storing the count will be the answer. 
Below is the implementation of the above approach: 
 

C++




// C++ program to count minimum subarray having
// unique elements
#include <bits/stdc++.h>
using namespace std;
 
// Function to count minimum number of subarrays
int minimumSubarrays(int ar[], int n)
{
    set<int> se;
 
    int cnt = 1;
 
    for (int i = 0; i < n; i++) {
        // Checking if an element already exist in
        // the current sub-array
        if (se.count(ar[i]) == 0) {
            // inserting the current element
            se.insert(ar[i]);
        }
        else {
            cnt++;
            // clear set for new possible value of subarrays
            se.clear();
            // inserting the current element
            se.insert(ar[i]);
        }
    }
 
    return cnt;
}
 
// Driver Code
int main()
{
    int ar[] = { 1, 2, 1, 3, 4, 2, 4, 4, 4 };
    int n = sizeof(ar) / sizeof(ar[0]);
    cout << minimumSubarrays(ar, n);
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
    // Function to count minimum number of subarrays
    static int minimumSubarrays(int ar[], int n)
    {
        Vector se = new Vector();
     
        int cnt = 1;
     
        for (int i = 0; i < n; i++)
        {
             
            // Checking if an element already exist in
            // the current sub-array
            if (se.contains(ar[i]) == false)
            {
                // inserting the current element
                se.add(ar[i]);
            }
            else
            {
                cnt++;
                 
                // clear set for new possible value
                // of subarrays
                se.clear();
                 
                // inserting the current element
                se.add(ar[i]);
            }
        }
        return cnt;
    }
     
    // Driver Code
    public static void main (String[] args)
    {
        int ar[] = { 1, 2, 1, 3, 4, 2, 4, 4, 4 };
        int n = ar.length ;
         
        System.out.println(minimumSubarrays(ar, n));
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python 3 implementation of the approach
 
# Function to count minimum number of subarrays
def minimumSubarrays(ar, n) :
    se = []
 
    cnt = 1;
 
    for i in range(n) :
         
        # Checking if an element already exist in
        # the current sub-array
        if se.count(ar[i]) == 0 :
             
            # inserting the current element
            se.append(ar[i])
        else :
            cnt += 1
             
            # clear set for new possible value
            # of subarrays
            se.clear()
             
            # inserting the current element
            se.append(ar[i])
    return cnt
 
# Driver Code
ar = [ 1, 2, 1, 3, 4, 2, 4, 4, 4 ]
n = len(ar)
print(minimumSubarrays(ar, n))
 
# This code is contributed by
# divyamohan123

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;            
 
class GFG
{
     
    // Function to count minimum number of subarrays
    static int minimumSubarrays(int []ar, int n)
    {
        List<int> se = new List<int>();
     
        int cnt = 1;
     
        for (int i = 0; i < n; i++)
        {
             
            // Checking if an element already exist in
            // the current sub-array
            if (se.Contains(ar[i]) == false)
            {
                // inserting the current element
                se.Add(ar[i]);
            }
            else
            {
                cnt++;
                 
                // clear set for new possible value
                // of subarrays
                se.Clear();
                 
                // inserting the current element
                se.Add(ar[i]);
            }
        }
        return cnt;
    }
     
    // Driver Code
    public static void Main(String[] args)
    {
        int []ar = { 1, 2, 1, 3, 4, 2, 4, 4, 4 };
        int n = ar.Length ;
         
        Console.WriteLine(minimumSubarrays(ar, n));
    }
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
    // Javascript implementation of the approach
     
    // Function to count minimum number of subarrays
    function minimumSubarrays(ar, n)
    {
        let se = new Set();
       
        let cnt = 1;
       
        for (let i = 0; i < n; i++)
        {
               
            // Checking if an element already exist in
            // the current sub-array
            if (se.has(ar[i]) == false)
            {
                // inserting the current element
                se.add(ar[i]);
            }
            else
            {
                cnt++;
                   
                // clear set for new possible value
                // of subarrays
                se.clear();
                   
                // inserting the current element
                se.add(ar[i]);
            }
        }
        return cnt;
    }
     
    // Driver code
     
        let ar = [ 1, 2, 1, 3, 4, 2, 4, 4, 4 ];
        let n = ar.length ;
           
        document.write(minimumSubarrays(ar, n));
 
// This code is contributed by susmitakundugoaldanga.
</script>
Output: 
5

 

Time Complexity : O(n*log(n))
 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!