Given an array a of size N and an integer K, the task is to divide the array into K segments such that sum of the minimum of K segments is maximized.
Examples:
Input: a[] = {5, 7, 4, 2, 8, 1, 6}, K = 3
Output: 7
Divide the array at indexes 0 and 1. Then the segments are {5}, {7}, {4, 2, 8, 1, 6}. Sum of the minimum is 5 + 7 + 1 = 13
Input: a[] = {6, 5, 3, 8, 9, 10, 4, 7, 10}, K = 4
Output: 27
Approach: The problem can be solved using Dynamic Programming. Try all the possible partitions that are possible using recursion. Let dp[i][k] be the maximum sum of minimums till index i with k partitions. Hence the possible states will be partition at every index from the index i till n. The maximum sum of minimums of all those states will be our answer. After writing this recurrence, we can use memoization.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
const int MAX = 10;
int maximizeSum( int a[], int n, int ind,
int k, int dp[MAX][MAX])
{
if (k == 0) {
if (ind == n)
return 0;
else
return -1e9;
}
else if (ind == n)
return -1e9;
else if (dp[ind][k] != -1)
return dp[ind][k];
else {
int ans = 0;
int mini = a[ind];
for ( int i = ind; i < n; i++) {
mini = min(mini, a[i]);
ans = max(ans, maximizeSum(
a, n, i + 1, k - 1, dp) + mini);
}
return dp[ind][k] = ans;
}
}
int main()
{
int a[] = { 5, 7, 4, 2, 8, 1, 6 };
int k = 3;
int n = sizeof (a) / sizeof (a[0]);
int dp[MAX][MAX];
memset (dp, -1, sizeof dp);
cout << maximizeSum(a, n, 0, k, dp);
return 0;
}
|
Java
class GFG
{
static int MAX = 10 ;
public static int maximizeSum(
int [] a, int n, int ind,
int k, int [][] dp)
{
if (k == 0 )
{
if (ind == n)
return 0 ;
else
return - 1000000000 ;
}
else if (ind == n)
return - 1000000000 ;
else if (dp[ind][k] != - 1 )
return dp[ind][k];
else
{
int ans = 0 ;
int mini = a[ind];
for ( int i = ind; i < n; i++)
{
mini = Math.min(mini, a[i]);
ans = Math.max(ans,
maximizeSum(a, n, i + 1 ,
k - 1 , dp) + mini);
}
return dp[ind][k] = ans;
}
}
public static void main(String[] args)
{
int [] a = { 5 , 7 , 4 , 2 , 8 , 1 , 6 };
int k = 3 ;
int n = a.length;
int [][] dp = new int [MAX][MAX];
for ( int i = 0 ; i < MAX; i++)
{
for ( int j = 0 ; j < MAX; j++)
dp[i][j] = - 1 ;
}
System.out.println(
maximizeSum(a, n, 0 , k, dp));
}
}
|
Python3
MAX = 10
def maximizeSum(a,n, ind, k, dp):
if (k = = 0 ):
if (ind = = n):
return 0
else :
return - 1e9
elif (ind = = n):
return - 1e9
elif (dp[ind][k] ! = - 1 ):
return dp[ind][k]
else :
ans = 0
mini = a[ind]
for i in range (ind,n, 1 ):
mini = min (mini, a[i])
ans = max (ans, maximizeSum(\
a, n, i + 1 , k - 1 , dp) + mini)
dp[ind][k] = ans
return ans
if __name__ = = '__main__' :
a = [ 5 , 7 , 4 , 2 , 1 , 6 ]
k = 3
n = len (a)
dp = [[ - 1 for i in range ( MAX )]\
for j in range ( MAX )]
print (maximizeSum(a, n, 0 , k, dp))
|
C#
using System;
class GFG
{
static int MAX = 10;
public static int maximizeSum(
int [] a, int n, int ind,
int k, int [] dp)
{
if (k == 0)
{
if (ind == n)
return 0;
else
return -1000000000;
}
else if (ind == n)
return -1000000000;
else if (dp[ind, k] != -1)
return dp[ind, k];
else
{
int ans = 0;
int mini = a[ind];
for ( int i = ind; i < n; i++)
{
mini = Math.Min(mini, a[i]);
ans = Math.Max(ans,
maximizeSum(a, n, i + 1,
k - 1, dp) + mini);
}
return dp[ind,k] = ans;
}
}
public static void Main(String[] args)
{
int [] a = { 5, 7, 4, 2, 8, 1, 6 };
int k = 3;
int n = a.Length;
int [,] dp = new int [MAX, MAX];
for ( int i = 0; i < MAX; i++)
{
for ( int j = 0; j < MAX; j++)
dp[i, j] = -1;
}
Console.WriteLine(
maximizeSum(a, n, 0, k, dp));
}
}
|
Javascript
<script>
var MAX = 10;
function maximizeSum(a , n , ind , k, dp)
{
if (k == 0) {
if (ind == n)
return 0;
else
return -1000000000;
}
else if (ind == n)
return -1000000000;
else if (dp[ind][k] != -1)
return dp[ind][k];
else {
var ans = 0;
var mini = a[ind];
for (i = ind; i < n; i++) {
mini = Math.min(mini, a[i]);
ans = Math.max(ans,
maximizeSum(a, n, i + 1, k - 1, dp) + mini);
}
return dp[ind][k] = ans;
}
}
var a = [ 5, 7, 4, 2, 8, 1, 6 ];
var k = 3;
var n = a.length;
var dp =
Array(MAX).fill().map(()=>Array(MAX).fill(0));
for ( var i = 0; i < MAX; i++) {
for (j = 0; j < MAX; j++)
dp[i][j] = -1;
}
document.write(maximizeSum(a, n, 0, k, dp));
</script>
|
Time Complexity: O(N * N * K)
Auxiliary Space: O(N * K)