Related Articles

# Divide first N natural numbers into 3 equal sum subsets

• Last Updated : 08 Apr, 2021

Given an integer N, the task is to check whether the elements from the range [1, N] can be divided into three non-empty equal sum subsets. If possible then print Yes else print No.

Examples:

Input: N = 5
Output: Yes
The possible subsets are {1, 4}, {2, 3} and {5}.
(1 + 4) = (2 + 3) = (5)

Input: N = 3
Output: No

Approach: There are two cases:

1. If N ≤ 3: In this case, it is not possible to divide the elements in the subsets that satisfy the given condition. So, print No.
2. If N > 3: In this case, it is only possible when the sum of all the elements of the range [1, N] is divisible by 3 which can be easily calculated as sum = (N * (N + 1)) / 2. Now, if sum % 3 = 0 then print Yes else print No.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function that returns true``// if the subsets are possible``bool` `possible(``int` `n)``{` `    ``// If n <= 3 then it is not possible``    ``// to divide the elements in three subsets``    ``// satisfying the given conditions``    ``if` `(n > 3) {` `        ``// Sum of all the elements``        ``// in the range [1, n]``        ``int` `sum = (n * (n + 1)) / 2;` `        ``// If the sum is divisible by 3``        ``// then it is possible``        ``if` `(sum % 3 == 0) {``            ``return` `true``;``        ``}``    ``}``    ``return` `false``;``}` `// Driver code``int` `main()``{``    ``int` `n = 5;` `    ``if` `(possible(n))``        ``cout << ``"Yes"``;``    ``else``        ``cout << ``"No"``;` `    ``return` `0;``}`

## Java

 `// Java implementation of the approach``import` `java.math.*;` `class` `GFG``{` `    ``// Function that returns true``    ``// if the subsets are possible``    ``public` `static` `boolean` `possible(``int` `n)``    ``{``    ` `        ``// If n <= 3 then it is not possible``        ``// to divide the elements in three subsets``        ``// satisfying the given conditions``        ``if` `(n > ``3``)``        ``{``    ` `            ``// Sum of all the elements``            ``// in the range [1, n]``            ``int` `sum = (n * (n + ``1``)) / ``2``;``    ` `            ``// If the sum is divisible by 3``            ``// then it is possible``            ``if` `(sum % ``3` `== ``0``)``            ``{``                ``return` `true``;``            ``}``        ``}``        ``return` `false``;``    ``}` `    ``// Driver code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int` `n = ``5``;` `        ``if` `(possible(n))``            ``System.out.println(``"Yes"``);``        ``else``            ``System.out.println(``"No"``);``    ``}``}` `// This code is contributed by Naman_Garg`

## Python3

 `# Python3 implementation of the approach` `# Function that returns true``# if the subsets are possible``def` `possible(n) :` `    ``# If n <= 3 then it is not possible``    ``# to divide the elements in three subsets``    ``# satisfying the given conditions``    ``if` `(n > ``3``) :` `        ``# Sum of all the elements``        ``# in the range [1, n]``        ``sum` `=` `(n ``*` `(n ``+` `1``)) ``/``/` `2``;` `        ``# If the sum is divisible by 3``        ``# then it is possible``        ``if` `(``sum` `%` `3` `=``=` `0``) :``            ``return` `True``;``    ` `    ``return` `False``;` `# Driver code``if` `__name__ ``=``=` `"__main__"` `:` `    ``n ``=` `5``;` `    ``if` `(possible(n)) :``        ``print``(``"Yes"``);``    ``else` `:``        ``print``(``"No"``);``        ` `# This code is contributed by AnkitRai01`

## C#

 `// C# implementation of the approach``using` `System;` `class` `GFG``{``    ` `// Function that returns true``// if the subsets are possible``public` `static` `bool` `possible(``int` `n)``{` `    ``// If n <= 3 then it is not possible``    ``// to divide the elements in three subsets``    ``// satisfying the given conditions``    ``if` `(n > 3)``    ``{` `        ``// Sum of all the elements``        ``// in the range [1, n]``        ``int` `sum = (n * (n + 1)) / 2;` `        ``// If the sum is divisible by 3``        ``// then it is possible``        ``if` `(sum % 3 == 0)``        ``{``            ``return` `true``;``        ``}``    ``}``    ``return` `false``;``}` `// Driver code``static` `public` `void` `Main ()``{``    ``int` `n = 5;` `    ``if` `(possible(n))``        ``Console.Write(``"Yes"``);``    ``else``        ``Console.Write(``"No"``);``}``}` `// This code is contributed by ajit`

## Javascript

 ``
Output:
`Yes`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

My Personal Notes arrow_drop_up