Skip to content
Related Articles
Divide array into increasing and decreasing subsequence without changing the order
• Last Updated : 18 May, 2021

Given a merged sequence which consists of two sequences which got merged, one of them was strictly increasing and the other was strictly decreasing. Elements of increasing sequence were inserted between elements of the decreasing one without changing the order.

Sequences [1, 3, 4] and [10, 4, 2] can produce the following resulting sequences:
[10, 1, 3, 4, 2, 4], [1, 3, 4, 10, 4, 2].
The following sequence cannot be the result of these insertions:
[1, 10, 4, 4, 3, 2] because the order of elements in the increasing sequence was changed.

Given a merged sequence, the task is to find any two suitable initial sequences, one of them should be strictly increasing, and another should be strictly decreasing.
Note: An empty sequence and the sequence consisting of one element can be considered as increasing or decreasing.
Examples:

Input: arr[] = {5, 1, 3, 6, 8, 2, 9, 0, 10}
Output: [1, 3, 6, 8, 9, 10] [5, 2, 0]

Input: arr[] = {1, 2, 4, 0, 2}
Output: -1
No such sequences possible.

Method 1: We can modify Longest Increasing Sequence) and solve the required problem. It will take O(nlogn) time.

Method 2: We can also solve this problem only in a single traversal. The Idea used here is that maintain two sorted arrays.
For a new element x

• If it can be appended to only one of the arrays then append it.
• If it can be appended to neither, then the answer is -1.
• If it can be appended to both then check the next element y, if y > x then append x to the increasing one otherwise append x to the decreasing one.

Below is the implementation of the above approach:

## C++

 `// C++ implementation of the approach``#include ``using` `namespace` `std;` `// Function to print strictly increasing and``// strictly decreasing sequence if possible``void` `Find_Sequence(``int` `arr[], ``int` `n)``{``    ``// Arrays to store strictly increasing and``    ``// decreasing sequence``    ``vector<``int``> inc_arr, dec_arr;` `    ``// Initializing last element of both sequence``    ``int` `flag = 0;``    ``long` `inc = -1, dec = 1e7;` `    ``// Iterating through the array``    ``for` `(``int` `i = 0; i < n; i++)``    ``{``        ``// If current element can be appended``        ``// to both the sequences``        ``if` `(inc < arr[i] && arr[i] < dec)``        ``{``            ``// If next element is greater than``            ``// the current element``            ``// Then append it to the strictly``            ``// increasing array``            ``if` `(arr[i] < arr[i + 1])``            ``{``                ``inc = arr[i];``                ``inc_arr.emplace_back(arr[i]);``            ``}` `            ``// Otherwise append it to the``            ``// strictly decreasing array``            ``else``            ``{``                ``dec = arr[i];``                ``dec_arr.emplace_back(arr[i]);``            ``}``        ``}``        ` `        ``// If current element can be appended``        ``// to the increasing sequence only``        ``else` `if` `(inc < arr[i])``        ``{``            ``inc = arr[i];``            ``inc_arr.emplace_back(arr[i]);``        ``}``        ` `        ``// If current element can be appended``        ``// to the decreasing sequence only``        ``else` `if` `(dec > arr[i])``        ``{``            ``dec = arr[i];``            ``dec_arr.emplace_back(arr[i]);``        ``}``        ` `        ``// Else we can not make such sequences``        ``// from the given array``        ``else``        ``{``            ``cout << -1 << endl;``            ``flag = 1;``            ``break``;``        ``}``    ``}``    ` `    ``// Print the required sequences``    ``if` `(!flag)``    ``{``        ``for` `(``auto` `i = inc_arr.begin();``                  ``i != inc_arr.end(); i++)``            ``cout << *i << ``" "``;``        ``cout << endl;` `        ``for` `(``auto` `i = dec_arr.begin();``                  ``i != dec_arr.end(); i++)``            ``cout << *i << ``" "``;``        ``cout << endl;``    ``}``}` `// Driver code``int` `main()``{``    ``int` `arr[] = { 5, 1, 3, 6, 8, 2, 9, 0, 10 };``    ``int` `n = ``sizeof``(arr) / ``sizeof``(arr);``    ``Find_Sequence(arr, n);``}` `// This code is contributed by sanjeev2552`

## Java

 `// Java implementation of the approach``import` `java.util.*;` `class` `GFG``{` `    ``// Function to print strictly increasing and``    ``// strictly decreasing sequence if possible``    ``static` `void` `Find_Sequence(``int``[] arr, ``int` `n)``    ``{` `        ``// Arrays to store strictly increasing and``        ``// decreasing sequence``        ``Vector inc_arr = ``new` `Vector<>(),``                        ``dec_arr = ``new` `Vector<>();` `        ``// Initializing last element of both sequence``        ``int` `flag = ``0``;``        ``long` `inc = -``1``, dec = (``long``) 1e7;` `        ``// Iterating through the array``        ``for` `(``int` `i = ``0``; i < n; i++)``        ``{` `            ``// If current element can be appended``            ``// to both the sequences``            ``if` `(inc < arr[i] && arr[i] < dec)``            ``{` `                ``// If next element is greater than``                ``// the current element``                ``// Then append it to the strictly``                ``// increasing array``                ``if` `(arr[i] < arr[i + ``1``])``                ``{``                    ``inc = arr[i];``                    ``inc_arr.add(arr[i]);``                ``}` `                ``// Otherwise append it to the``                ``// strictly decreasing array``                ``else``                ``{``                    ``dec = arr[i];``                    ``dec_arr.add(arr[i]);``                ``}``            ``}` `            ``// If current element can be appended``            ``// to the increasing sequence only``            ``else` `if` `(inc < arr[i])``            ``{``                ``inc = arr[i];``                ``inc_arr.add(arr[i]);``            ``}` `            ``// If current element can be appended``            ``// to the decreasing sequence only``            ``else` `if` `(dec > arr[i])``            ``{``                ``dec = arr[i];``                ``dec_arr.add(arr[i]);``            ``}` `            ``// Else we can not make such sequences``            ``// from the given array``            ``else``            ``{``                ``System.out.println(-``1``);``                ``flag = ``1``;``                ``break``;``            ``}``        ``}` `        ``// Print the required sequences``        ``if` `(flag == ``0``)``        ``{``            ``for` `(``int` `i : inc_arr)``                ``System.out.print(i + ``" "``);``            ``System.out.println();` `            ``for` `(``int` `i : dec_arr)``                ``System.out.print(i + ``" "``);``            ``System.out.println();``        ``}``    ``}` `    ``// Driver Code``    ``public` `static` `void` `main(String[] args)``    ``{``        ``int``[] arr = { ``5``, ``1``, ``3``, ``6``, ``8``, ``2``, ``9``, ``0``, ``10` `};``        ``int` `n = arr.length;``        ``Find_Sequence(arr, n);``    ``}``}` `// This code is contributed by``// sanjeev2552`

## Python3

 `# Python3 implementation of the approach` `# Function to print strictly increasing and``# strictly decreasing sequence if possible``def` `Find_Sequence(array, n):` `    ``# Arrays to store strictly increasing and``    ``# decreasing sequence``    ``inc_arr, dec_arr ``=``[], []` `    ``# Initializing last element of both sequence``    ``inc, dec ``=` `-``1``, ``1e7` `    ``# Iterating through the array``    ``for` `i ``in` `range``(n):` `        ``# If current element can be appended``        ``# to both the sequences``        ``if` `inc < array[i] < dec:` `            ``# If next element is greater than``            ``# the current element``            ``# Then append it to the strictly``            ``# increasing array``            ``if` `array[i] < array[i ``+` `1``]:``                ``inc ``=` `array[i]``                ``inc_arr.append(array[i])` `            ``# Otherwise append it to the``            ``# strictly decreasing array``            ``else``:``                ``dec ``=` `array[i]``                ``dec_arr.append(array[i])` `        ``# If current element can be appended``        ``# to the increasing sequence only``        ``elif` `inc < array[i]:``            ``inc ``=` `array[i]``            ``inc_arr.append(array[i])` `        ``# If current element can be appended``        ``# to the decreasing sequence only``        ``elif` `dec > array[i]:``            ``dec ``=` `array[i]``            ``dec_arr.append(array[i])` `        ``# Else we can not make such sequences``        ``# from the given array``        ``else``:``            ``print``(``'-1'``)``            ``break` `    ``# Print the required sequences``    ``else``:``        ``print``(inc_arr, dec_arr)` `# Driver code``arr ``=` `[``5``, ``1``, ``3``, ``6``, ``8``, ``2``, ``9``, ``0``, ``10``]``n ``=` `len``(arr)``Find_Sequence(arr, n)`

## C#

 `// C# implementation of the approach``using` `System;``using` `System.Collections;``using` `System.Collections.Generic; ` `class` `GFG{``  ` `// Function to print strictly increasing and``// strictly decreasing sequence if possible``static` `void` `Find_Sequence(``int``[] arr, ``int` `n)``{` `    ``// Arrays to store strictly increasing and``    ``// decreasing sequence``    ``ArrayList inc_arr = ``new` `ArrayList();``    ``ArrayList dec_arr = ``new` `ArrayList();` `    ``// Initializing last element of both sequence``    ``int` `flag = 0;``    ``long` `inc = -1, dec = (``long``)1e7;` `    ``// Iterating through the array``    ``for``(``int` `i = 0; i < n; i++)``    ``{` `        ``// If current element can be appended``        ``// to both the sequences``        ``if` `(inc < arr[i] && arr[i] < dec)``        ``{` `            ``// If next element is greater than``            ``// the current element``            ``// Then append it to the strictly``            ``// increasing array``            ``if` `(arr[i] < arr[i + 1])``            ``{``                ``inc = arr[i];``                ``inc_arr.Add(arr[i]);``            ``}` `            ``// Otherwise append it to the``            ``// strictly decreasing array``            ``else``            ``{``                ``dec = arr[i];``                ``dec_arr.Add(arr[i]);``            ``}``        ``}` `        ``// If current element can be appended``        ``// to the increasing sequence only``        ``else` `if` `(inc < arr[i])``        ``{``            ``inc = arr[i];``            ``inc_arr.Add(arr[i]);``        ``}` `        ``// If current element can be appended``        ``// to the decreasing sequence only``        ``else` `if` `(dec > arr[i])``        ``{``            ``dec = arr[i];``            ``dec_arr.Add(arr[i]);``        ``}` `        ``// Else we can not make such sequences``        ``// from the given array``        ``else``        ``{``            ``Console.Write(-1);``            ``flag = 1;``            ``break``;``        ``}``    ``}` `    ``// Print the required sequences``    ``if` `(flag == 0)``    ``{``        ``foreach``(``int` `i ``in` `inc_arr)``            ``Console.Write(i + ``" "``);``            ` `        ``Console.Write(``'\n'``);` `        ``foreach``(``int` `i ``in` `dec_arr)``            ``Console.Write(i + ``" "``);``            ` `        ``Console.Write(``'\n'``);``    ``}``}` `// Driver Code``public` `static` `void` `Main(``string``[] args)``{``    ``int``[] arr = { 5, 1, 3, 6, 8,``                  ``2, 9, 0, 10 };``    ``int` `n = arr.Length;``    ` `    ``Find_Sequence(arr, n);``}``}` `// This code is contributed by rutvik_56`

## PHP

 ` ``\$arr``[``\$i``])``        ``{``            ``\$dec` `= ``\$arr``[``\$i``];``            ``array_push``(``\$dec_arr``, ``\$arr``[``\$i``]);``        ``}` `        ``// Else we can not make such sequences``        ``// from the given array``        ``else``        ``{``            ``echo` `'-1'``;``            ``break``;``        ``}``    ``}``    ` `    ``// Print the required sequences``    ``print_r(``\$inc_arr``);``    ``print_r(``\$dec_arr``);``}` `// Driver code``\$arr` `= ``array``(5, 1, 3, 6, 8, 2, 9, 0, 10);``\$n` `= ``count``(``\$arr``);``Find_Sequence(``\$arr``, ``\$n``);` `// This code is contributed by Ryuga``?>`

## Javascript

 ``
Output:
`[1, 3, 6, 8, 9, 10] [5, 2, 0]`

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live

My Personal Notes arrow_drop_up