Skip to content
Related Articles

Related Articles

Divide an isosceles triangle in two parts with ratio of areas as n:m

View Discussion
Improve Article
Save Article
  • Last Updated : 27 Aug, 2022
View Discussion
Improve Article
Save Article

Given the height H       of an isosceles triangle and two integers n       m       . The task is to find the height h       from top of the triangle such that if we make a cut at height h from top parallel to base then the triangle must be divided into two parts with the ratio of their areas equal to n:m
Examples
 

Input : H = 4, n = 1, m = 1
Output : 2.82843

Input : H = 4, n = 1, m = 0
Output : 4

 

First of all before proceeding let us mention some of the basic properties of an isosceles triangle.
Let ▲ABC is an isosceles triangle with AB = AC and BC being unequal side and base of the triangle. If D is mid-point of BC, then AD is our height H. Also, if we draw a parallel line to BC which cuts AB and AC at points E and F respectively and G being the midpoint of EF then ▲AEG is similar to ▲ABD, ▲AFG is similar to ▲ACD, ▲AEF is similar to ▲ABC, and by using properties of similar triangles we can conclude the following points: 
AE/AB = AG/AD = EG/BD = EF/BC = AF/AC —–(i)
 

As per problem’s requirement, we have to find out the height h, such that the ratio of the area of ▲AEF to the area of trapezium EFCB = n:m.
 

Let, h is the height of cut from the top of the triangle. 
Now, area of ▲AEF = 0.5 * AG * EF and area of trapezium EFCB = 0.5 * GD * (EF+BC) 
also, ratio of both is n:m. 
So, we can say that ratio of area of ▲AEF to area of ▲ABC is equal to n :(n+m). 
=> area of ▲AEF / area of ▲ABC = n / (n+m) 
=> (0.5 * AG * EF) / (0.5 * AD * BC) = n / (n+m) 
=> (AG/AD) * (EF/BC) = n / (n+m) 
=> (EF/BC) * (EF/BC) = n / (n+m) 
=> h2 /H2 = n / (n+m) 
=> h = H*sqrt(n/(n+m)) 
 

Below is the implementation of the above approach: 
 

C++




// C++ program, to find height h
// which divide isosceles triangle
// into ratio n:m
#include <bits/stdc++.h>
using namespace std;
 
// Function to return the height
float heightCalculate(int H, int n, int m)
{
    // type cast the n, m into float
    float N = n * 1.0;
    float M = m * 1.0;
    // calculate the height for cut
    float h = H * sqrt(N / (N + M));
    return h;
}
 
// Driver code
int main()
{
    int H = 10, n = 3, m = 4;
    cout << heightCalculate(H, n, m);
    return 0;
}

Java




// Java program, to find height h
// which divide isosceles triangle
// into ratio n:m
 
import java.io.*;
 
class GFG {
 
 
// Function to return the height
static float heightCalculate(int H, int n, int m)
{
    // type cast the n, m into float
    float N = (float)(n * 1.0);
    float M = (float)(m * 1.0);
    // calculate the height for cut
    float h = H *(float) Math.sqrt(N / (N + M));
    return h;
}
 
// Driver code
 
 
    public static void main (String[] args) {
            int H = 10, n = 3, m = 4;
    System.out.print( heightCalculate(H, n, m));
    }
}

Python3




# Python 3 program, to find height
# h which divide isosceles triangle
# into ratio n:m
from math import sqrt
 
# Function to return the height
def heightCalculate(H, n, m):
     
    # type cast the n, m into float
    N = n * 1.0
    M = m * 1.0
     
    # calculate the height for cut
    h = H * sqrt(N / (N + M))
    return h
 
# Driver code
if __name__ == '__main__':
    H = 10
    n = 3
    m = 4
    print("{0:.6}" .
    format(heightCalculate(H, n, m)));
     
# This code is contributed
# by Surendra_Gangwar

C#




// C# program, to find height h
// which divide isosceles triangle
// into ratio n:m
using System;
 
class GFG
{
 
// Function to return the height
static float heightCalculate(int H,
                             int n, int m)
{
    // type cast the n, m into float
    float N = (float)(n * 1.0);
    float M = (float)(m * 1.0);
     
    // calculate the height for cut
    float h = H * (float) Math.Sqrt(N / (N + M));
    return h;
}
 
// Driver code
public static void Main ()
{
    int H = 10, n = 3, m = 4;
    Console.WriteLine(heightCalculate(H, n, m));
}
}
 
// This code is contributed
// by inder_verma

PHP




<?php
// PHP program, to find height h
// which divide isosceles triangle
// into ratio n:m
 
// Function to return the height
function heightCalculate($H, $n, $m)
{
    // type cast the n, m into float
    $N = $n * 1.0;
    $M = $m * 1.0;
     
    // calculate the height for cut
    $h = $H * sqrt($N / ($N + $M));
    return $h;
}
 
// Driver code
$H = 10; $n = 3; $m = 4;
echo heightCalculate($H, $n, $m);
 
// This code is contributed
// by anuj_67
?>

Javascript




<script>
 
// JavaScript program, to find height h
// which divide isosceles triangle
// into ratio n:m
 
// Function to return the height
function heightCalculate(H, n, m)
{
    // type cast the n, m into float
    let N = n * 1.0;
    let M = m * 1.0;
    // calculate the height for cut
    let h = H * Math.sqrt(N / (N + M));
    return h;
}
 
// Driver code
 
    let H = 10, n = 3, m = 4;
    document.write(heightCalculate(H, n, m));
 
 
// This code is contributed by Surbhi Tyagi.
 
</script>

Output

6.54654

Time Complexity: O(log(n)) as it is using inbuilt sqrt function
Auxiliary Space: O(1)


My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!