Skip to content
Related Articles

Related Articles

Improve Article
Divide an array into K subarray with the given condition
  • Difficulty Level : Hard
  • Last Updated : 06 May, 2021

Given an array arr[] and an integer K. The task is to divide the array into K parts ( subarray ) such that the sum of the values of all subarray is minimum.
The value of every subarray is defined as: 
 

  • Take the maximum from that subarray.
  • Subtract each element of the subarray with the maximum.
  • Take the sum of all the values after subtraction.

The task is to minimize the sum of the values after dividing the array into K parts.
Examples: 
 

Input: arr[] = { 2, 9, 5, 4, 8, 3, 6 }, K = 2 
Output: 19 
Explanation: 
The two groups are : {2} with max = 2 and {9, 5, 4, 8, 3, 6} with max=9, 
sum of difference of first group = 2 – 2 = 0, 
sum of difference of second group = (9-9) + (9-5) + (9-4) + (9-8) + (9-3) + (9-6) = 19
Input: arr[] = { 12, 20, 30, 14, 25}, K = 3 
Output: 19 
 

 

Approach: 
The brute-force solution will be to try all the possible partitions and take the minimum overall. Although this solution is exponential in time. In the recursive solution, there are many overlapping sub-problems that can be optimised using dynamic programming.
So, We can form a basic recursive formula and that computes every possible solution and finds the best possible solution. We can see that the recursive solution has many overlapping sub-problems we can reduce the complexity using Dynamic programming.
Recursive formula: 
F(i, K) = { min of all values such that j < i [ max(Arr[i..j]) * (i – j + 1) – Sum(A[i…j] ] } + F(j, K-1) 
The bottom-up approach can be used to compute the values of sub-problems first and store them.
Here dp[i][j] defines the minimum value that can be obtained if the array is starting from index i and have j partition.
So, the answer to the problems will be dp[0][K], array starting at 0 and having K partitions.
Below is the implementation of the above approach: 
 



C++




// C++ implementation of the above approach
 
#include <bits/stdc++.h>
using namespace std;
 
// Function to divide an array into k
// parts such that the sum of difference
// of every element with the maximum element
// of that part is minimum
int divideArray(int arr[], int n, int k)
{
    // Dp to store the values
    int dp[500][500] = { 0 };
 
    k -= 1;
 
    // Fill up the dp table
    for (int i = n - 1; i >= 0; i--) {
        for (int j = 0; j <= k; j++) {
            // Intitilize maximum value
            dp[i][j] = INT_MAX;
 
            // Max element and the sum
            int max_ = -1, sum = 0;
 
            // Run a loop from i to n
            for (int l = i; l < n; l++) {
                // Find the maximum number
                // from i to l and the sum
                // from i to l
                max_ = max(max_, arr[l]);
                sum += arr[l];
 
                // Find the sum of difference
                // of every element with the
                // maximum element
                int diff = (l - i + 1) * max_ - sum;
 
                // If the array can be divided
                if (j > 0)
                    dp[i][j]
                        = min(dp[i][j],
                              diff + dp[l + 1][j - 1]);
                else
                    dp[i][j] = diff;
            }
        }
    }
 
    // Returns the minimum sum
    // in K parts
    return dp[0][k];
}
 
// Driver code
int main()
{
    int arr[] = { 2, 9, 5, 4, 8, 3, 6 };
    int n = sizeof(arr) / sizeof(int);
    int k = 2;
 
    cout << divideArray(arr, n, k) << "\n";
 
    return 0;
}

Java




// Java implementation of the above approach
class GFG
{
     
    // Function to divide an array into k
    // parts such that the sum of difference
    // of every element with the maximum element
    // of that part is minimum
    static int divideArray(int arr[], int n, int k)
    {
        // Dp to store the values
        int dp[][] = new int[500][500];
         
        int i, j;
         
        for(i = 0; i < 500; i++)
            for(j = 0; j < 500; j++)
                dp[i][j] = 0;
                 
        k -= 1;
     
        // Fill up the dp table
        for (i = n - 1; i >= 0; i--)
        {
            for (j = 0; j <= k; j++)
            {
                 
                // Intitilize maximum value
                dp[i][j] = Integer.MAX_VALUE;
     
                // Max element and the sum
                int max_ = -1, sum = 0;
     
                // Run a loop from i to n
                for (int l = i; l < n; l++)
                {
                    // Find the maximum number
                    // from i to l and the sum
                    // from i to l
                    max_ = Math.max(max_, arr[l]);
                    sum += arr[l];
     
                    // Find the sum of difference
                    // of every element with the
                    // maximum element
                    int diff = (l - i + 1) * max_ - sum;
     
                    // If the array can be divided
                    if (j > 0)
                        dp[i][j] = Math.min(dp[i][j], diff +
                                            dp[l + 1][j - 1]);
                    else
                        dp[i][j] = diff;
                }
            }
        }
     
        // Returns the minimum sum
        // in K parts
        return dp[0][k];
    }
     
    // Driver code
    public static void main (String[] args)
    {
        int arr[] = { 2, 9, 5, 4, 8, 3, 6 };
        int n = arr.length;
        int k = 2;
     
        System.out.println(divideArray(arr, n, k));
    }
}
 
// This code is contributed by AnkitRai01

Python3




# Python3 implementation of the above approach
 
# Function to divide an array into k
# parts such that the summ of difference
# of every element with the maximum element
# of that part is minimum
def divideArray(arr, n, k):
     
    # Dp to store the values
    dp = [[0 for i in range(500)]
             for i in range(500)]
 
    k -= 1
 
    # Fill up the dp table
    for i in range(n - 1, -1, -1):
        for j in range(0, k + 1):
             
            # Intitilize maximum value
            dp[i][j] = 10**9
 
            # Max element and the summ
            max_ = -1
            summ = 0
 
            # Run a loop from i to n
            for l in range(i, n):
                 
                # Find the maximum number
                # from i to l and the summ
                # from i to l
                max_ = max(max_, arr[l])
                summ += arr[l]
 
                # Find the summ of difference
                # of every element with the
                # maximum element
                diff = (l - i + 1) * max_ - summ
 
                # If the array can be divided
                if (j > 0):
                    dp[i][j]= min(dp[i][j], diff +
                                  dp[l + 1][j - 1])
                else:
                    dp[i][j] = diff
 
    # Returns the minimum summ
    # in K parts
    return dp[0][k]
 
# Driver code
arr = [2, 9, 5, 4, 8, 3, 6]
n = len(arr)
k = 2
 
print(divideArray(arr, n, k))
 
# This code is contributed by Mohit Kumar

C#




// C# implementation of above approach
using System;
 
class GFG
{
     
    // Function to divide an array into k
    // parts such that the sum of difference
    // of every element with the maximum element
    // of that part is minimum
    static int divideArray(int []arr, int n, int k)
    {
        // Dp to store the values
        int [,]dp = new int[500, 500];
         
        int i, j;
         
        for(i = 0; i < 500; i++)
            for(j = 0; j < 500; j++)
                dp[i, j] = 0;
                 
        k -= 1;
     
        // Fill up the dp table
        for (i = n - 1; i >= 0; i--)
        {
            for (j = 0; j <= k; j++)
            {
                 
                // Intitilize maximum value
                dp[i, j] = int.MaxValue;
     
                // Max element and the sum
                int max_ = -1, sum = 0;
     
                // Run a loop from i to n
                for (int l = i; l < n; l++)
                {
                    // Find the maximum number
                    // from i to l and the sum
                    // from i to l
                    max_ = Math.Max(max_, arr[l]);
                    sum += arr[l];
     
                    // Find the sum of difference
                    // of every element with the
                    // maximum element
                    int diff = (l - i + 1) * max_ - sum;
     
                    // If the array can be divided
                    if (j > 0)
                        dp[i, j] = Math.Min(dp[i, j], diff +
                                            dp[l + 1, j - 1]);
                    else
                        dp[i, j] = diff;
                }
            }
        }
     
        // Returns the minimum sum
        // in K parts
        return dp[0, k];
    }
     
    // Driver code
    public static void Main (String[] args)
    {
        int []arr = { 2, 9, 5, 4, 8, 3, 6 };
        int n = arr.Length;
        int k = 2;
     
        Console.WriteLine(divideArray(arr, n, k));
    }
}
 
// This code is contributed by 29AjayKumar

Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to divide an array into k
// parts such that the sum of difference
// of every element with the maximum element
// of that part is minimum
function divideArray(arr, n, k)
{
    // Dp to store the values
    var dp = Array.from(Array(500), ()=> Array(500).fill(0));
 
    k -= 1;
 
    // Fill up the dp table
    for (var i = n - 1; i >= 0; i--) {
        for (var j = 0; j <= k; j++) {
            // Intitilize maximum value
            dp[i][j] = 1000000000;
 
            // Max element and the sum
            var max_ = -1, sum = 0;
 
            // Run a loop from i to n
            for (var l = i; l < n; l++) {
                // Find the maximum number
                // from i to l and the sum
                // from i to l
                max_ = Math.max(max_, arr[l]);
                sum += arr[l];
 
                // Find the sum of difference
                // of every element with the
                // maximum element
                var diff = (l - i + 1) * max_ - sum;
 
                // If the array can be divided
                if (j > 0)
                    dp[i][j]
                        = Math.min(dp[i][j],
                              diff + dp[l + 1][j - 1]);
                else
                    dp[i][j] = diff;
            }
        }
    }
 
    // Returns the minimum sum
    // in K parts
    return dp[0][k];
}
 
// Driver code
var arr = [2, 9, 5, 4, 8, 3, 6 ];
var n = arr.length;
var k = 2;
document.write( divideArray(arr, n, k) + "<br>");
 
</script>
Output: 
19

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with industry experts, please refer Geeks Classes Live 




My Personal Notes arrow_drop_up
Recommended Articles
Page :