Distributing M items in a circle of size N starting from K-th position
M items are to be delivered in a circle of size N. Find the position where the M-th item will be delivered if we start from a given position K. Note that items are distributed at adjacent positions starting from K.
Examples :
Input : N = 5 // Size of circle M = 2 // Number of items K = 1 // Starting position Output : 2 The first item will be given to 1st position. Second (or last) item will be delivered to 2nd position Input : N = 5 M = 8 K = 2 Output : 4 The last item will be delivered to 4th position
We check if the number of items to be distributed is greater than our remaining positions in current cycle of circle or not. If yes, then we simply return m + k – 1 (We distribute items in same cycle starting from k). Else we compute number of remaining items after completing current cycle and return mod of remaining items.
Below is the implementation of the above idea:
C++
// C++ program to find the position where // last item is delivered. #include <bits/stdc++.h> using namespace std; // n ==> Size of circle // m ==> Number of items // k ==> Initial position int lastPosition( int n, int m, int k) { // n - k + 1 is number of positions // before we reach beginning of circle // If m is less than this value, then // we can simply return (m-1)th position if (m <= n - k + 1) return m + k - 1; // Let us compute remaining items before // we reach beginning. m = m - (n - k + 1); // We compute m % n to skip all complete // rounds. If we reach end, we return n // else we return m % n return (m % n == 0) ? n : (m % n); } // Driver code int main() { int n = 5; int m = 8; int k = 2; cout << lastPosition(n, m, k); return 0; } |
Java
// Java program to find the position where // last item is delivered. class GFG { // n ==> Size of circle // m ==> Number of items // k ==> Initial position static int lastPosition( int n, int m, int k) { // n - k + 1 is number of positions // before we reach beginning of circle // If m is less than this value, then // we can simply return (m-1)th position if (m <= n - k + 1 ) return m + k - 1 ; // Let us compute remaining items before // we reach beginning. m = m - (n - k + 1 ); // We compute m % n to skip all complete // rounds. If we reach end, we return n // else we return m % n return (m % n == 0 ) ? n : (m % n); } // Driver Program to test above function public static void main(String arg[]) { int n = 5 ; int m = 8 ; int k = 2 ; System.out.print(lastPosition(n, m, k)); } } // This code is contributed by Anant Agarwal. |
Python3
# Python program to find the position where # last item is delivered. # n ==> Size of circle # m ==> Number of items # k ==> Initial position def lastPosition(n, m, k): # n - k + 1 is number of positions # before we reach beginning of circle # If m is less than this value, then # we can simply return (m-1)th position if (m < = n - k + 1 ): return m + k - 1 # Let us compute remaining items before # we reach beginning. m = m - (n - k + 1 ) # We compute m % n to skip all complete # rounds. If we reach end, we return n # else we return m % n if (m % n = = 0 ): return n else : return m % n # Driver code n = 5 m = 8 k = 2 print (lastPosition(n, m, k)) # This code is contributed by Sachin Bisht |
C#
// C# program to find the position where // last item is delivered. using System; class GFG { // n ==> Size of circle // m ==> Number of items // k ==> Initial position static int lastPosition( int n, int m, int k) { // n - k + 1 is number of positions // before we reach beginning of circle // If m is less than this value, then // we can simply return (m-1)th position if (m <= n - k + 1) return m + k - 1; // Let us compute remaining items before // we reach beginning. m = m - (n - k + 1); // We compute m % n to skip all complete // rounds. If we reach end, we return n // else we return m % n return (m % n == 0) ? n : (m % n); } // Driver Program to test above function public static void Main() { int n = 5; int m = 8; int k = 2; Console.WriteLine(lastPosition(n, m, k)); } } // This code is contributed by vt_m. |
PHP
<?php // PHP program to find the // position where last item // is delivered. // n ==> Size of circle // m ==> Number of items // k ==> Initial position function lastPosition( $n , $m , $k ) { // n - k + 1 is number of // positions before we reach // beginning of circle. // If m is less than this value, // then we can simply return // (m-1)th position if ( $m <= $n - $k + 1) return $m + $k - 1; // Let us compute remaining items // before we reach beginning. $m = $m - ( $n - $k + 1); // We compute m % n to skip // all complete rounds. If we // reach end, we return n // else we return m % n return ( $m % $n == 0) ? $n : ( $m % $n ); } // Driver code $n = 5; $m = 8; $k = 2; echo lastPosition( $n , $m , $k ); // This code is contributed by ajit ?> |
Javascript
<script> // Javascript program to find the // position where last item // is delivered. // n ==> Size of circle // m ==> Number of items // k ==> Initial position function lastPosition(n, m, k) { // n - k + 1 is number of // positions before we reach // beginning of circle. // If m is less than this value, // then we can simply return // (m-1)th position if (m <= n - k + 1) return m + k - 1; // Let us compute remaining items // before we reach beginning. m = m - (n - k + 1); // We compute m % n to skip // all complete rounds. If we // reach end, we return n // else we return m % n return (m % n == 0) ? n : (m % n); } // Driver code let n = 5; let m = 8; let k = 2; document.write(lastPosition(n, m, k)); // This code is contributed by _saurabh_jaiswal </script> |
Output :
4
Time Complexity: O(1)
Auxiliary Space: O(1)
This article is contributed by Sarthak Kohli. If you like GeeksforGeeks and would like to contribute, you can also write an article using write.geeksforgeeks.org or mail your article to review-team@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Please Login to comment...