Skip to content
Related Articles

Related Articles

Improve Article

Distinct Prime Factors of an Array

  • Difficulty Level : Medium
  • Last Updated : 22 Jul, 2021

Given an array arr[] of size N, the task is to find the distinct prime factors of all the numbers in the given array.

Examples: 

Input: N = 3, arr[] = {12, 15, 18} 
Output: 2 3 5 
Explanation: 
12 = 2 x 2 x 3 
15 = 3 x 5 
18 = 2 x 3 x 3 
Distinct prime factors among the given numbers are 2, 3, 5.

Input: N = 9, arr[] = {2, 3, 4, 5, 6, 7, 8, 9, 10} 
Output: 2 3 5 7 

Naive Approach: A simple approach of this problem will be finding the prime factors of each number in the array. Then find the distinct prime numbers among these prime factors. 
Time Complexity: O(N2)



Efficient Approach: An efficient approach is to first find all prime numbers up to the given limit using Sieve of Eratosthenes and store them in an array. For every prime number in the prime array, check if any number in the input array is divisible or not. If it is divisible, then store that prime number in the answer array. Finally, return the answer array after repeating this process for all the numbers in the given input array.

Below is the implementation of the above approach: 

C++14




#include <bits/stdc++.h>
 
using namespace std;
 
//cppimplementation of the above approach
 
//Function to return an array
//of prime numbers upto n
//using Sieve of Eratosthenes
vector<int> sieve(int n){
    vector<int> prime (n + 1,0);
    int p = 2;
    while(p * p<= n){
        if(prime[p]== 0){
            for (int i=2*p;i<n+1;i+=p)
                    prime[i]= 1;
              }
        p+= 1;
      }
 
 
    vector<int> allPrimes;
    for (int i =2;i<n;i++) if (prime[i]==0) allPrimes.push_back(i);
    return allPrimes;
  }
 
//Function to return distinct
//prime factors from the given array
vector<int> distPrime(vector<int> arr, vector<int> allPrimes){
 
    //Creating an empty array
    //to store distinct prime factors
    vector<int> list1;
 
    //Iterating through all the
    //prime numbers and check if
    //any of the prime numbers is a
    //factor of the given input array
    for (int i : allPrimes){
        for (int j :arr){
            if(j % i == 0){
                list1.push_back(i);
                break;
              }
            }
          }
    return list1;
  }
 
//Driver code
 
int main()
{
  //Finding prime numbers upto 10000
  //using Sieve of Eratosthenes
  vector<int> allPrimes = sieve(10000);
 
  vector<int> arr = {15, 30, 60};
  vector<int> ans = distPrime(arr, allPrimes);
  cout<<"[";
  for(int i:ans) cout<<i<<" ";
  cout<<"]";
 
}

Java




// Java implementation of the above approach
import java.util.*;
 
class GFG
{
 
// Function to return an array
// of prime numbers upto n
// using Sieve of Eratosthenes
static ArrayList<Integer> sieve(int n){
    ArrayList<Integer> prime = new ArrayList<Integer>();
    for(int i = 0; i < n + 1; i++)
    prime.add(0);
    int p = 2;
    while(p * p <= n){
        if(prime.get(p) == 0){
            for (int i = 2 * p; i < n + 1; i += p)
                prime.set(i, 1);
            }
        p += 1;
    }
 
    ArrayList<Integer> allPrimes = new ArrayList<Integer>();
    for (int i = 2; i < n; i++){
    if (prime.get(i) == 0)
        allPrimes.add(i);
    }
    return allPrimes;
}
 
// Function to return distinct
// prime factors from the given array
static ArrayList<Integer> distPrime(ArrayList<Integer> arr,
                            ArrayList<Integer> allPrimes){
 
    // Creating an empty array
    // to store distinct prime factors
    ArrayList<Integer> list1 = new ArrayList<Integer>();
 
    // Iterating through all the
    // prime numbers and check if
    // any of the prime numbers is a
    // factor of the given input array
    for (int i = 0; i < allPrimes.size(); i++){
        for (int j = 0; j < arr.size(); j++){
            if(arr.get(j) % allPrimes.get(i) == 0){
                list1.add(allPrimes.get(i));
                break;
            }
            }
        }
    return list1;
}
 
// Driver code
public static void main(String args[])
{
     
    // Finding prime numbers upto 10000
    // using Sieve of Eratosthenes
    ArrayList<Integer> allPrimes = new ArrayList<Integer>(sieve(10000));
    ArrayList<Integer> arr = new ArrayList<Integer>();
    arr.add(15);
    arr.add(30);
    arr.add(60);
    ArrayList<Integer> ans = new ArrayList<Integer>(distPrime(arr, allPrimes));
    System.out.print("[");
    for(int i = 0; i < ans.size(); i++)
    System.out.print(ans.get(i) + " ");
    System.out.print("]");
}
}
 
// This code is contributed by Surendra_Gangwar

Python3




# Python3 implementation of the above approach
 
# Function to return an array
# of prime numbers upto n
# using Sieve of Eratosthenes
def sieve(n):
    prime =[True]*(n + 1)
    p = 2
    while(p * p<= n):
        if(prime[p] == True):
            for i in range(p * p, n + 1, p):
                prime[i] = False
        p += 1
    allPrimes = [x for x in range(2, n)if prime[x]]
    return allPrimes
 
# Function to return distinct
# prime factors from the given array
def distPrime(arr, allPrimes):
 
    # Creating an empty array
    # to store distinct prime factors
    list1 = list()
     
    # Iterating through all the
    # prime numbers and check if
    # any of the prime numbers is a
    # factor of the given input array
    for i in allPrimes:
        for j in arr:
            if(j % i == 0):
                list1.append(i)
                break
    return list1
 
# Driver code
if __name__=="__main__":
 
    # Finding prime numbers upto 10000
    # using Sieve of Eratosthenes
    allPrimes = sieve(10000)
 
    arr = [15, 30, 60]
    ans = distPrime(arr, allPrimes)
    print(ans)
 
# This code is contributed by mohit kumar 29

C#




// C# implementation of the above approach
using System;
using System.Collections.Generic;
class GFG
{
 
// Function to return an array
// of prime numbers upto n
// using Sieve of Eratosthenes
static List<int> sieve(int n)
{
    List<int> prime = new List<int>();
    for(int i = 0; i < n + 1; i++)
    prime.Add(0);
    int p = 2;
    while(p * p <= n)
    {
        if(prime[p] == 0)
        {
            for (int i = 2 * p; i < n + 1; i += p)
                prime[i]= 1;
            }
        p += 1;
    }
 
    List<int> allPrimes = new List<int>();
    for (int i = 2; i < n; i++){
    if (prime[i] == 0)
        allPrimes.Add(i);
    }
    return allPrimes;
}
 
// Function to return distinct
// prime factors from the given array
static List<int> distPrime(List<int> arr,
                            List<int> allPrimes){
 
    // Creating an empty array
    // to store distinct prime factors
       List<int> list1 = new List<int>();
 
    // Iterating through all the
    // prime numbers and check if
    // any of the prime numbers is a
    // factor of the given input array
    for (int i = 0; i < allPrimes.Count; i++){
        for (int j = 0; j < arr.Count; j++){
            if(arr[j] % allPrimes[i] == 0){
                list1.Add(allPrimes[i]);
                break;
            }
            }
        }
    return list1;
}
 
// Driver code
public static void Main(string []args)
{
     
    // Finding prime numbers upto 10000
    // using Sieve of Eratosthenes
    List<int> allPrimes = new List<int>(sieve(10000));
    List<int> arr = new List<int>();
    arr.Add(15);
    arr.Add(30);
    arr.Add(60);
    List<int> ans = new List<int>(distPrime(arr, allPrimes));
    Console.Write("[");
    for(int i = 0; i < ans.Count; i++)
    Console.Write(ans[i] + " ");
    Console.Write("]");
}
}
 
// This code is contributed by chitranayal

Javascript




<script>
 
// Javascript implementation of the above approach
 
// Function to return an array
// of prime numbers upto n
// using Sieve of Eratosthenes
function sieve(n)
{
    let prime = [];
    for(let i = 0; i < n + 1; i++)
        prime.push(0);
         
    let p = 2;
    while (p * p <= n)
    {
        if (prime[p] == 0)
        {
            for(let i = 2 * p; i < n + 1; i += p)
                prime[i] = 1;
        }
        p += 1;
    }
  
    let allPrimes = [];
    for(let i = 2; i < n; i++)
    {
        if (prime[i] == 0)
            allPrimes.push(i);
    }
    return allPrimes;
}
 
// Function to return distinct
// prime factors from the given array
function distPrime(arr, allPrimes)
{
     
    // Creating an empty array
    // to store distinct prime factors
    let list1 = [];
  
    // Iterating through all the
    // prime numbers and check if
    // any of the prime numbers is a
    // factor of the given input array
    for(let i = 0; i < allPrimes.length; i++)
    {
        for(let j = 0; j < arr.length; j++)
        {
            if (arr[j] % allPrimes[i] == 0)
            {
                list1.push(allPrimes[i]);
                break;
            }
        }
    }
    return list1;
}
 
// Driver code
 
// Finding prime numbers upto 10000
// using Sieve of Eratosthenes
let allPrimes = sieve(10000);
let arr = [];
arr.push(15);
arr.push(30);
arr.push(60);
let ans = distPrime(arr, allPrimes);
 
document.write("[");
for(let i = 0; i < ans.length; i++)
    document.write(ans[i] + " ");
     
document.write("]");
  
// This code is contributed by avanitrachhadiya2155
 
</script>
Output: 
[2, 3, 5]

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :