Skip to content
Related Articles

Related Articles

Distinct pairs from given arrays (a[i], b[j]) such that (a[i] + b[j]) is a Fibonacci number

Improve Article
Save Article
  • Last Updated : 12 May, 2021
Improve Article
Save Article

Given two arrays a[] and b[], the task is to count the pairs (a[i], b[j]) such that (a[i] + b[j]) is a Fibonacci number.Note that (a, b) is equal to (b, a) and will be counted once. 
First few Fibonacci numbers are: 
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 141, …..

Examples: 
 

Input: a[] = {99, 1, 33, 2}, b[] = {1, 11, 2} 
Output:
Total distinct pairs are (1, 1), (1, 2), (33, 1) and (2, 11)
Input: a[] = {5, 0, 8}, b[] = {0, 9} 
Output:
 

 

Approach: 
 

  • Take an empty set.
  • Run two nested loops to generate all possible pairs from the two arrays taking one element from first array(call it a) and one from second array(call it b).
  • Apply fibonacci test on (a + b) i.e. in order for a number x to be a Fibonacci number, any one of either 5 * x2 + 4 or 5 * x2 – 4 must be a perfect square.
  • If it is Fibonacci number then push (a, b) in the set, if a < b or (b, a) if b < a. This is done to avoid duplicacy.
  • The size of the set in the end is the total count of valid pairs.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if
// x is a perfect square
bool isPerfectSquare(long double x)
{
    // Find floating point value of
    // square root of x
    long double sr = sqrt(x);
 
    // If square root is an integer
    return ((sr - floor(sr)) == 0);
}
 
// Function that returns true if
// n is a Fibonacci Number
bool isFibonacci(int n)
{
    return isPerfectSquare(5 * n * n + 4)
           || isPerfectSquare(5 * n * n - 4);
}
 
// Function to return the count of distinct pairs
// from the given array such that the sum of the
// pair elements is a Fibonacci number
int totalPairs(int a[], int b[], int n, int m)
{
    // Set is used to avoid duplicate pairs
    set<pair<int, int> > s;
 
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
 
            // If sum is a Fibonacci number
            if (isFibonacci(a[i] + b[j]) == true) {
                if (a[i] < b[j])
                    s.insert(make_pair(a[i], b[j]));
                else
                    s.insert(make_pair(b[j], a[i]));
            }
        }
    }
 
    // Return the size of the set
    return s.size();
}
 
// Driver code
int main()
{
    int a[] = { 99, 1, 33, 2 };
    int b[] = { 1, 11, 2 };
    int n = sizeof(a) / sizeof(a[0]);
    int m = sizeof(b) / sizeof(b[0]);
 
    cout << totalPairs(a, b, n, m);
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
static class pair
{
    int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function that returns true if
// x is a perfect square
static boolean isPerfectSquare(double x)
{
    // Find floating point value of
    // square root of x
    double sr = Math.sqrt(x);
 
    // If square root is an integer
    return ((sr - Math.floor(sr)) == 0);
}
 
// Function that returns true if
// n is a Fibonacci Number
static boolean isFibonacci(int n)
{
    return isPerfectSquare(5 * n * n + 4) ||
           isPerfectSquare(5 * n * n - 4);
}
 
// Function to return the count of distinct pairs
// from the given array such that the sum of the
// pair elements is a Fibonacci number
static int totalPairs(int a[], int b[],
                      int n, int m)
{
    // Set is used to avoid duplicate pairs
    List<pair> s = new LinkedList<>();
 
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
 
            // If sum is a Fibonacci number
            if (isFibonacci(a[i] + b[j]) == true)
            {
                 
                if (a[i] < b[j])
                {
                    if(checkDuplicate(s, new pair(a[i], b[j])))
                        s.add(new pair(a[i], b[j]));
                }
                else
                {
                    if(checkDuplicate(s, new pair(b[j], a[i])))
                        s.add(new pair(b[j], a[i]));
                }
            }
        }
    }
 
    // Return the size of the set
    return s.size();
}
 
static boolean checkDuplicate(List<pair> pairList,
                                    pair newPair)
{
    for(pair p: pairList)
    {
        if(p.first == newPair.first &&
           p.second == newPair.second)
            return false;
    }
    return true;
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { 99, 1, 33, 2 };
    int b[] = { 1, 11, 2 };
    int n = a.length;
    int m = b.length;
 
    System.out.println(totalPairs(a, b, n, m));
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the approach
from math import sqrt,floor
 
# Function that returns true if
# x is a perfect square
def isPerfectSquare(x) :
 
    # Find floating point value of
    # square root of x
    sr = sqrt(x)
 
    # If square root is an integer
    return ((sr - floor(sr)) == 0)
 
# Function that returns true if
# n is a Fibonacci Number
def isFibonacci(n ) :
 
    return (isPerfectSquare(5 * n * n + 4) or
            isPerfectSquare(5 * n * n - 4))
 
# Function to return the count of distinct pairs
# from the given array such that the sum of the
# pair elements is a Fibonacci number
def totalPairs(a, b, n, m) :
 
    # Set is used to avoid duplicate pairs
    s = set();
 
    for i in range(n) :
        for j in range(m) :
 
            # If sum is a Fibonacci number
            if (isFibonacci(a[i] + b[j]) == True) :
                if (a[i] < b[j]) :
                    s.add((a[i], b[j]));
                else :
                    s.add((b[j], a[i]));
 
    # Return the size of the set
    return len(s);
 
# Driver code
if __name__ == "__main__" :
     
    a = [ 99, 1, 33, 2 ];
    b = [ 1, 11, 2 ];
    n = len(a);
    m = len(b);
 
    print(totalPairs(a, b, n, m));
 
# This code is contributed by Ryuga

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;            
 
class GFG
{
public class pair
{
    public int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function that returns true if
// x is a perfect square
static bool isPerfectSquare(double x)
{
    // Find floating point value of
    // square root of x
    double sr = Math.Sqrt(x);
 
    // If square root is an integer
    return ((sr - Math.Floor(sr)) == 0);
}
 
// Function that returns true if
// n is a Fibonacci Number
static bool isFibonacci(int n)
{
    return isPerfectSquare(5 * n * n + 4) ||
           isPerfectSquare(5 * n * n - 4);
}
 
// Function to return the count of distinct pairs
// from the given array such that the sum of the
// pair elements is a Fibonacci number
static int totalPairs(int []a, int []b,
                      int n, int m)
{
    // Set is used to avoid duplicate pairs
    List<pair> s = new List<pair>();
 
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
 
            // If sum is a Fibonacci number
            if (isFibonacci(a[i] + b[j]) == true)
            {
                 
                if (a[i] < b[j])
                {
                    if(checkDuplicate(s, new pair(a[i], b[j])))
                                   s.Add(new pair(a[i], b[j]));
                }
                else
                {
                    if(checkDuplicate(s, new pair(b[j], a[i])))
                                   s.Add(new pair(b[j], a[i]));
                }
            }
        }
    }
 
    // Return the size of the set
    return s.Count;
}
 
static bool checkDuplicate(List<pair> pairList,
                                      pair newPair)
{
    foreach(pair p in pairList)
    {
        if(p.first == newPair.first &&
           p.second == newPair.second)
            return false;
    }
    return true;
}
 
// Driver code
public static void Main(String[] args)
{
    int []a = { 99, 1, 33, 2 };
    int []b = { 1, 11, 2 };
    int n = a.Length;
    int m = b.Length;
 
    Console.WriteLine(totalPairs(a, b, n, m));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that returns true if
// x is a perfect square
function isPerfectSquare(x)
{
    // Find floating point value of
    // square root of x
    var sr = Math.sqrt(x);
 
    // If square root is an integer
    return ((sr - Math.floor(sr)) == 0);
}
 
// Function that returns true if
// n is a Fibonacci Number
function isFibonacci(n)
{
    return isPerfectSquare(5 * n * n + 4)
           || isPerfectSquare(5 * n * n - 4);
}
 
// Function to return the count of distinct pairs
// from the given array such that the sum of the
// pair elements is a Fibonacci number
function totalPairs(a, b, n, m)
{
    // Set is used to avoid duplicate pairs
    var s = new Set();
 
    for (var i = 0; i < n; i++) {
        for (var j = 0; j < m; j++) {
 
            // If sum is a Fibonacci number
            if (isFibonacci(a[i] + b[j])) {
                if (a[i] < b[j])
                {
                    var tmp = a[i]+" "+b[j];
                    s.add(tmp);
                }
                else
                {
                    var tmp = b[j]+" "+a[i];
                    s.add(tmp);
                }
            }
        }
    }
 
    // Return the size of the set
    return s.size;
}
 
// Driver code
var a = [99, 1, 33, 2 ];
var b = [1, 11, 2 ];
var n = a.length;
var m = b.length;
document.write( totalPairs(a, b, n, m));
 
</script>

Output: 

4

 


My Personal Notes arrow_drop_up
Related Articles

Start Your Coding Journey Now!