Skip to content
Related Articles

Related Articles

Improve Article
Save Article
Like Article

Distinct pairs from given arrays (a[i], b[j]) such that (a[i] + b[j]) is a Fibonacci number

  • Last Updated : 12 May, 2021

Given two arrays a[] and b[], the task is to count the pairs (a[i], b[j]) such that (a[i] + b[j]) is a Fibonacci number.Note that (a, b) is equal to (b, a) and will be counted once. 
First few Fibonacci numbers are: 
 

0, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 141, …..

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.

Examples: 
 



Input: a[] = {99, 1, 33, 2}, b[] = {1, 11, 2} 
Output:
Total distinct pairs are (1, 1), (1, 2), (33, 1) and (2, 11)
Input: a[] = {5, 0, 8}, b[] = {0, 9} 
Output:
 

 

Approach: 
 

  • Take an empty set.
  • Run two nested loops to generate all possible pairs from the two arrays taking one element from first array(call it a) and one from second array(call it b).
  • Apply fibonacci test on (a + b) i.e. in order for a number x to be a Fibonacci number, any one of either 5 * x2 + 4 or 5 * x2 – 4 must be a perfect square.
  • If it is Fibonacci number then push (a, b) in the set, if a < b or (b, a) if b < a. This is done to avoid duplicacy.
  • The size of the set in the end is the total count of valid pairs.

Below is the implementation of the above approach: 
 

C++




// C++ implementation of the approach
#include <bits/stdc++.h>
using namespace std;
 
// Function that returns true if
// x is a perfect square
bool isPerfectSquare(long double x)
{
    // Find floating point value of
    // square root of x
    long double sr = sqrt(x);
 
    // If square root is an integer
    return ((sr - floor(sr)) == 0);
}
 
// Function that returns true if
// n is a Fibonacci Number
bool isFibonacci(int n)
{
    return isPerfectSquare(5 * n * n + 4)
           || isPerfectSquare(5 * n * n - 4);
}
 
// Function to return the count of distinct pairs
// from the given array such that the sum of the
// pair elements is a Fibonacci number
int totalPairs(int a[], int b[], int n, int m)
{
    // Set is used to avoid duplicate pairs
    set<pair<int, int> > s;
 
    for (int i = 0; i < n; i++) {
        for (int j = 0; j < m; j++) {
 
            // If sum is a Fibonacci number
            if (isFibonacci(a[i] + b[j]) == true) {
                if (a[i] < b[j])
                    s.insert(make_pair(a[i], b[j]));
                else
                    s.insert(make_pair(b[j], a[i]));
            }
        }
    }
 
    // Return the size of the set
    return s.size();
}
 
// Driver code
int main()
{
    int a[] = { 99, 1, 33, 2 };
    int b[] = { 1, 11, 2 };
    int n = sizeof(a) / sizeof(a[0]);
    int m = sizeof(b) / sizeof(b[0]);
 
    cout << totalPairs(a, b, n, m);
    return 0;
}

Java




// Java implementation of the approach
import java.util.*;
 
class GFG
{
     
static class pair
{
    int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function that returns true if
// x is a perfect square
static boolean isPerfectSquare(double x)
{
    // Find floating point value of
    // square root of x
    double sr = Math.sqrt(x);
 
    // If square root is an integer
    return ((sr - Math.floor(sr)) == 0);
}
 
// Function that returns true if
// n is a Fibonacci Number
static boolean isFibonacci(int n)
{
    return isPerfectSquare(5 * n * n + 4) ||
           isPerfectSquare(5 * n * n - 4);
}
 
// Function to return the count of distinct pairs
// from the given array such that the sum of the
// pair elements is a Fibonacci number
static int totalPairs(int a[], int b[],
                      int n, int m)
{
    // Set is used to avoid duplicate pairs
    List<pair> s = new LinkedList<>();
 
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
 
            // If sum is a Fibonacci number
            if (isFibonacci(a[i] + b[j]) == true)
            {
                 
                if (a[i] < b[j])
                {
                    if(checkDuplicate(s, new pair(a[i], b[j])))
                        s.add(new pair(a[i], b[j]));
                }
                else
                {
                    if(checkDuplicate(s, new pair(b[j], a[i])))
                        s.add(new pair(b[j], a[i]));
                }
            }
        }
    }
 
    // Return the size of the set
    return s.size();
}
 
static boolean checkDuplicate(List<pair> pairList,
                                    pair newPair)
{
    for(pair p: pairList)
    {
        if(p.first == newPair.first &&
           p.second == newPair.second)
            return false;
    }
    return true;
}
 
// Driver code
public static void main(String[] args)
{
    int a[] = { 99, 1, 33, 2 };
    int b[] = { 1, 11, 2 };
    int n = a.length;
    int m = b.length;
 
    System.out.println(totalPairs(a, b, n, m));
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 implementation of the approach
from math import sqrt,floor
 
# Function that returns true if
# x is a perfect square
def isPerfectSquare(x) :
 
    # Find floating point value of
    # square root of x
    sr = sqrt(x)
 
    # If square root is an integer
    return ((sr - floor(sr)) == 0)
 
# Function that returns true if
# n is a Fibonacci Number
def isFibonacci(n ) :
 
    return (isPerfectSquare(5 * n * n + 4) or
            isPerfectSquare(5 * n * n - 4))
 
# Function to return the count of distinct pairs
# from the given array such that the sum of the
# pair elements is a Fibonacci number
def totalPairs(a, b, n, m) :
 
    # Set is used to avoid duplicate pairs
    s = set();
 
    for i in range(n) :
        for j in range(m) :
 
            # If sum is a Fibonacci number
            if (isFibonacci(a[i] + b[j]) == True) :
                if (a[i] < b[j]) :
                    s.add((a[i], b[j]));
                else :
                    s.add((b[j], a[i]));
 
    # Return the size of the set
    return len(s);
 
# Driver code
if __name__ == "__main__" :
     
    a = [ 99, 1, 33, 2 ];
    b = [ 1, 11, 2 ];
    n = len(a);
    m = len(b);
 
    print(totalPairs(a, b, n, m));
 
# This code is contributed by Ryuga

C#




// C# implementation of the approach
using System;
using System.Collections.Generic;            
 
class GFG
{
public class pair
{
    public int first, second;
    public pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }
}
 
// Function that returns true if
// x is a perfect square
static bool isPerfectSquare(double x)
{
    // Find floating point value of
    // square root of x
    double sr = Math.Sqrt(x);
 
    // If square root is an integer
    return ((sr - Math.Floor(sr)) == 0);
}
 
// Function that returns true if
// n is a Fibonacci Number
static bool isFibonacci(int n)
{
    return isPerfectSquare(5 * n * n + 4) ||
           isPerfectSquare(5 * n * n - 4);
}
 
// Function to return the count of distinct pairs
// from the given array such that the sum of the
// pair elements is a Fibonacci number
static int totalPairs(int []a, int []b,
                      int n, int m)
{
    // Set is used to avoid duplicate pairs
    List<pair> s = new List<pair>();
 
    for (int i = 0; i < n; i++)
    {
        for (int j = 0; j < m; j++)
        {
 
            // If sum is a Fibonacci number
            if (isFibonacci(a[i] + b[j]) == true)
            {
                 
                if (a[i] < b[j])
                {
                    if(checkDuplicate(s, new pair(a[i], b[j])))
                                   s.Add(new pair(a[i], b[j]));
                }
                else
                {
                    if(checkDuplicate(s, new pair(b[j], a[i])))
                                   s.Add(new pair(b[j], a[i]));
                }
            }
        }
    }
 
    // Return the size of the set
    return s.Count;
}
 
static bool checkDuplicate(List<pair> pairList,
                                      pair newPair)
{
    foreach(pair p in pairList)
    {
        if(p.first == newPair.first &&
           p.second == newPair.second)
            return false;
    }
    return true;
}
 
// Driver code
public static void Main(String[] args)
{
    int []a = { 99, 1, 33, 2 };
    int []b = { 1, 11, 2 };
    int n = a.Length;
    int m = b.Length;
 
    Console.WriteLine(totalPairs(a, b, n, m));
}
}
 
// This code is contributed by Rajput-Ji

Javascript




<script>
 
// Javascript implementation of the approach
 
// Function that returns true if
// x is a perfect square
function isPerfectSquare(x)
{
    // Find floating point value of
    // square root of x
    var sr = Math.sqrt(x);
 
    // If square root is an integer
    return ((sr - Math.floor(sr)) == 0);
}
 
// Function that returns true if
// n is a Fibonacci Number
function isFibonacci(n)
{
    return isPerfectSquare(5 * n * n + 4)
           || isPerfectSquare(5 * n * n - 4);
}
 
// Function to return the count of distinct pairs
// from the given array such that the sum of the
// pair elements is a Fibonacci number
function totalPairs(a, b, n, m)
{
    // Set is used to avoid duplicate pairs
    var s = new Set();
 
    for (var i = 0; i < n; i++) {
        for (var j = 0; j < m; j++) {
 
            // If sum is a Fibonacci number
            if (isFibonacci(a[i] + b[j])) {
                if (a[i] < b[j])
                {
                    var tmp = a[i]+" "+b[j];
                    s.add(tmp);
                }
                else
                {
                    var tmp = b[j]+" "+a[i];
                    s.add(tmp);
                }
            }
        }
    }
 
    // Return the size of the set
    return s.size;
}
 
// Driver code
var a = [99, 1, 33, 2 ];
var b = [1, 11, 2 ];
var n = a.length;
var m = b.length;
document.write( totalPairs(a, b, n, m));
 
</script>
Output: 
4

 




My Personal Notes arrow_drop_up
Recommended Articles
Page :

Start Your Coding Journey Now!