Skip to content
Related Articles

Related Articles

Distance between two closest minimum
  • Last Updated : 04 Jan, 2019
GeeksforGeeks - Summer Carnival Banner

Given an array of n integers. Find the minimum distance between any two occurrences of the minimum integer in the array.

Examples:

Input : arr[] = {5, 1, 2, 3, 4, 1, 2, 1}
Output : 2
Explanation: The minimum element 1 occurs at 
             indexes: 1, 5 and 7. So the minimum
             distance is 7-5 = 2.

Input : arr[] = {1, 2, 1}
Output : 2

Brute Force Approach: The simplest approach is to find all pair of indexes of minimum element and calculate minimum distance.
Time Complexity: O(n^2), where n is the total number of elements in the array.

Efficient Approach: An efficient approach will be to observe that distance between index j and i will always be smaller than distance between indexes k and i where, k is greater than j. That is we only have to check distance between consecutive pairs of minimum elements and not all pairs. Below is the step by step algorithm:



  • Find the minimum element in the array
  • Find all occurrences of minimum element in the array and insert the indexes in a new array or list or vector.
  • Check if size of the list of indexes is greater than one or not, i.e. the minimum element occurs atleast twice. If not than return -1.
  • Traverse the list of indexes and calculate the minimum difference between any two consecutive indexes.

Below is the implementation of above idea:

C++




// CPP program to find Distance between
// two closest minimum
#include <iostream>
#include <limits.h>
#include <vector>
  
using namespace std;
  
// function to find Distance between
// two closest minimum
int findClosestMin(int arr[], int n)
{
    int min = INT_MAX;
  
    // find the min element in the array
    for (int i = 0; i < n; i++)
        if (arr[i] < min)
            min = arr[i];
  
    // vector to store indexes of occurrences
    // of minimum element in the array
    vector<int> indexes;
  
    // store indexes of occurrences
    // of minimum element in the array
    for (int i = 0; i < n; i++)
        if (arr[i] == min)
            indexes.push_back(i);
  
    // if minimum element doesnot occurs atleast
    // two times, return -1.
    if (indexes.size() < 2)
        return -1;
  
    int min_dist = INT_MAX;
  
    // calculate minimum difference between
    // any two consecutive indexes
    for (int i = 1; i < indexes.size(); i++) 
        if ((indexes[i] - indexes[i - 1]) < min_dist)
            min_dist = (indexes[i] - indexes[i - 1]);
  
    return min_dist;
}
  
// Driver code
int main()
{
    int arr[] = { 5, 1, 2, 3, 4, 1, 2, 1 };
    int size = sizeof(arr) / sizeof(arr[0]);
    cout << findClosestMin(arr, size);
    return 0;
}

Java




// Java program to find Distance between
// two closest minimum
import java.util.Vector;
  
class GFG {
  
// function to find Distance between
// two closest minimum
    static int findClosestMin(int arr[], int n) {
        int min = Integer.MAX_VALUE;
  
        // find the min element in the array
        for (int i = 0; i < n; i++) {
            if (arr[i] < min) {
                min = arr[i];
            }
        }
  
        // vector to store indexes of occurrences
        // of minimum element in the array
        Vector<Integer> indexes = new Vector<>();
  
        // store indexes of occurrences
        // of minimum element in the array
        for (int i = 0; i < n; i++) {
            if (arr[i] == min) {
                indexes.add(i);
            }
        }
  
        // if minimum element doesnot occurs atleast
        // two times, return -1.
        if (indexes.size() < 2) {
            return -1;
        }
  
        int min_dist = Integer.MAX_VALUE;
  
        // calculate minimum difference between
        // any two consecutive indexes
        for (int i = 1; i < indexes.size(); i++) {
            if ((indexes.get(i) - indexes.get(i - 1)) < min_dist) {
                min_dist = (indexes.get(i) - indexes.get(i - 1));
            }
        }
  
        return min_dist;
    }
  
// Driver code
    public static void main(String args[]) {
        int arr[] = {5, 1, 2, 3, 4, 1, 2, 1};
        int size = arr.length;
        System.out.println(findClosestMin(arr, size));
    }
}
  
// This code is contributed by PrinciRaj19992

Python3




# Python3 program to find Distance 
# between two closest minimum
import sys 
  
# function to find Distance between
# two closest minimum
def findClosestMin(arr, n):
      
    #assigning maximum value in python
    min = sys.maxsize
      
      
    for i in range(0, n):
        if (arr[i] < min):
            min = arr[i]
  
    # list in python to store indexes 
    # of occurrences of minimum element
    # in the array
    indexes = []
  
    # store indexes of occurrences
    # of minimum element in the array
    for i in range(0, n):
        if (arr[i] == min):
            indexes.append(i)
  
    # if minimum element doesnot occurs
    #  atleast two times, return -1.
    if (len(indexes) < 2):
        return -1
  
    min_dist = sys.maxsize
  
    # calculate minimum difference between
    # any two consecutive indexes
    for i in range(1, len(indexes)):
        if ((indexes[i] - indexes[i - 1]) < min_dist):
            min_dist = (indexes[i] - indexes[i - 1]);
  
    return min_dist;
  
# Driver code
arr = [ 5, 1, 2, 3, 4, 1, 2, 1 ]
ans = findClosestMin(arr, 8)
print (ans)
  
# This code is contributed by saloni1297.

C#




      
// C# program to find Distance between
// two closest minimum
using System;
using System.Collections.Generic;
public class GFG {
   
// function to find Distance between
// two closest minimum
    static int findClosestMin(int []arr, int n) {
        int min = int.MaxValue;
   
        // find the min element in the array
        for (int i = 0; i < n; i++) {
            if (arr[i] < min) {
                min = arr[i];
            }
        }
   
        // vector to store indexes of occurrences
        // of minimum element in the array
        List<int> indexes = new List<int>();
   
        // store indexes of occurrences
        // of minimum element in the array
        for (int i = 0; i < n; i++) {
            if (arr[i] == min) {
                indexes.Add(i);
            }
        }
   
        // if minimum element doesnot occurs atleast
        // two times, return -1.
        if (indexes.Count < 2) {
            return -1;
        }
        int min_dist = int.MaxValue;
   
        // calculate minimum difference between
        // any two consecutive indexes
        for (int i = 1; i < indexes.Count; i++) {
            if ((indexes[i] - indexes[i-1]) < min_dist) {
                min_dist = (indexes[i] - indexes[i-1]);
            }
        }
   
        return min_dist;
    }
   
// Driver code
    public static void Main() {
        int []arr = {5, 1, 2, 3, 4, 1, 2, 1};
        int size = arr.Length;
        Console.WriteLine(findClosestMin(arr, size));
    }
}
   
// This code is contributed by PrinciRaj19992

PHP




<?php
// Php program to find Distance between 
// two closest minimum 
  
// function to find Distance between 
// two closest minimum 
function findClosestMin($arr, $n
    $min = PHP_INT_MAX; 
  
    # find the min element in the array
    for ($i = 0; $i < $n; $i++) 
        if ($arr[$i] < $min
            $min = $arr[$i]; 
  
    // vector to store indexes of occurrences 
    // of minimum element in the array 
    $indexes = array() ;
  
    // store indexes of occurrences 
    // of minimum element in the array 
    for ($i = 0; $i < $n; $i++) 
        if ($arr[$i] == $min
            array_push($indexes, $i); 
  
    // if minimum element doesnot occurs atleast 
    // two times, return -1. 
    if (sizeof($indexes) < 2) 
        return -1; 
  
    $min_dist = PHP_INT_MAX; 
  
    // calculate minimum difference between 
    // any two consecutive indexes 
    for ($i = 1; $i < sizeof($indexes); $i++) 
        if (($indexes[$i] - 
             $indexes[$i - 1]) < $min_dist
            $min_dist = ($indexes[$i] - 
                         $indexes[$i - 1]); 
  
    return $min_dist
  
// Driver code 
$arr = array( 5, 1, 2, 3, 4, 1, 2, 1 );
$size = sizeof($arr); 
echo findClosestMin($arr, $size); 
  
// This code is contributed by Ryuga
?>

Output:

2

Time Complexity: O(n)
Auxiliary Space: O(n)

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :