Skip to content
Related Articles

Related Articles

Display all the Sundays of given year using Pandas in Python
  • Last Updated : 10 Jul, 2020

Let’s see how to display all the Sundays of a given year using Pandas. We will be using the date_range() function of the Pandas module.

Algorithm :

  1. Import the pandas module.
  2. Fetch all the Sundays using the date_range() function, the parameters are :
    • In order to display Sundays of 2020, start parameter is set as 2020-01-01.
    • The parameter periods is set to 52 as there are approximately 52 weeks in a year.
    • The parameter freq is set to W-SUN where W refers to weekly and SUN refers to Sunday.
  3. Print the fetched DateTimeIndex object.
filter_none

edit
close

play_arrow

link
brightness_4
code

# importing the module
import pandas as pd
  
# target year
year = "2020"
  
# instantiating the parameters
start = year + "-01-01"
periods = 52
freq = "W-SUN"
  
# fetching the Sundays
sundays = pd.date_range(start = start,
                        periods = periods,
                        freq = freq)
  
# printing the Sundays                        
print(sundays)

chevron_right


Output :

DatetimeIndex([‘2020-01-05’, ‘2020-01-12’, ‘2020-01-19’, ‘2020-01-26’,
‘2020-02-02’, ‘2020-02-09’, ‘2020-02-16’, ‘2020-02-23’,
‘2020-03-01’, ‘2020-03-08’, ‘2020-03-15’, ‘2020-03-22’,
‘2020-03-29’, ‘2020-04-05’, ‘2020-04-12’, ‘2020-04-19’,
‘2020-04-26’, ‘2020-05-03’, ‘2020-05-10’, ‘2020-05-17’,
‘2020-05-24’, ‘2020-05-31’, ‘2020-06-07’, ‘2020-06-14’,
‘2020-06-21’, ‘2020-06-28’, ‘2020-07-05’, ‘2020-07-12’,
‘2020-07-19’, ‘2020-07-26’, ‘2020-08-02’, ‘2020-08-09’,
‘2020-08-16’, ‘2020-08-23’, ‘2020-08-30’, ‘2020-09-06’,
‘2020-09-13’, ‘2020-09-20’, ‘2020-09-27’, ‘2020-10-04’,
‘2020-10-11’, ‘2020-10-18’, ‘2020-10-25’, ‘2020-11-01’,
‘2020-11-08’, ‘2020-11-15’, ‘2020-11-22’, ‘2020-11-29’,
‘2020-12-06’, ‘2020-12-13’, ‘2020-12-20’, ‘2020-12-27′],
dtype=’datetime64[ns]’, freq=’W-SUN’)

If we want to fetch any other day instead of Sunday, we can tweak the above program by changing the parameter freq to the desired day.



filter_none

edit
close

play_arrow

link
brightness_4
code

# importing the module
import pandas as pd
  
# target year
year = "2020"
  
# day to be fetched
day = "MON"
  
# instantiating the parameters
start = year + "-01-01"
periods = 52
freq = "W-" + day
  
# fetching the days
days = pd.date_range(start = start,
                     periods = periods,
                     freq = freq)
  
# printing the days                        
print(days)

chevron_right


Output :

DatetimeIndex([‘2020-01-06’, ‘2020-01-13’, ‘2020-01-20’, ‘2020-01-27’,
‘2020-02-03’, ‘2020-02-10’, ‘2020-02-17’, ‘2020-02-24’,
‘2020-03-02’, ‘2020-03-09’, ‘2020-03-16’, ‘2020-03-23’,
‘2020-03-30’, ‘2020-04-06’, ‘2020-04-13’, ‘2020-04-20’,
‘2020-04-27’, ‘2020-05-04’, ‘2020-05-11’, ‘2020-05-18’,
‘2020-05-25’, ‘2020-06-01’, ‘2020-06-08’, ‘2020-06-15’,
‘2020-06-22’, ‘2020-06-29’, ‘2020-07-06’, ‘2020-07-13’,
‘2020-07-20’, ‘2020-07-27’, ‘2020-08-03’, ‘2020-08-10’,
‘2020-08-17’, ‘2020-08-24’, ‘2020-08-31’, ‘2020-09-07’,
‘2020-09-14’, ‘2020-09-21’, ‘2020-09-28’, ‘2020-10-05’,
‘2020-10-12’, ‘2020-10-19’, ‘2020-10-26’, ‘2020-11-02’,
‘2020-11-09’, ‘2020-11-16’, ‘2020-11-23’, ‘2020-11-30’,
‘2020-12-07’, ‘2020-12-14’, ‘2020-12-21’, ‘2020-12-28′],
dtype=’datetime64[ns]’, freq=’W-MON’)

We may convert the DateTimeIndex object to a Series object to get a list of the days to be fetched.

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing the module
import pandas as pd
  
# target year
year = "2020"
  
# day to be fetched
day = "WED"
  
# instantiating the parameters
start = year + "-01-01"
periods = 52
freq = "W-" + day
  
# fetching the days
days = pd.Series(pd.date_range(start = start,
                               periods = periods,
                               freq = freq))
  
# printing the days                        
print(days)

chevron_right


Output :

0    2020-01-01
1    2020-01-08
2    2020-01-15
3    2020-01-22
4    2020-01-29
5    2020-02-05
6    2020-02-12
7    2020-02-19
8    2020-02-26
9    2020-03-04
10   2020-03-11
11   2020-03-18
12   2020-03-25
13   2020-04-01
14   2020-04-08
15   2020-04-15
16   2020-04-22
17   2020-04-29
18   2020-05-06
19   2020-05-13
20   2020-05-20
21   2020-05-27
22   2020-06-03
23   2020-06-10
24   2020-06-17
25   2020-06-24
26   2020-07-01
27   2020-07-08
28   2020-07-15
29   2020-07-22
30   2020-07-29
31   2020-08-05
32   2020-08-12
33   2020-08-19
34   2020-08-26
35   2020-09-02
36   2020-09-09
37   2020-09-16
38   2020-09-23
39   2020-09-30
40   2020-10-07
41   2020-10-14
42   2020-10-21
43   2020-10-28
44   2020-11-04
45   2020-11-11
46   2020-11-18
47   2020-11-25
48   2020-12-02
49   2020-12-09
50   2020-12-16
51   2020-12-23
dtype: datetime64[ns]

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up