Skip to content
Related Articles

Related Articles

Disjoint Set Union on trees | Set 1
  • Difficulty Level : Medium
  • Last Updated : 10 Dec, 2020
GeeksforGeeks - Summer Carnival Banner

Given a tree and weights of nodes. Weights are non-negative integers. Task is to find maximum size of a subtree of a given tree such that all nodes are even in weights.
Prerequisite : Disjoint Set Union
Examples : 
 

Input : Number of nodes = 7
        Weights of nodes = 1 2 6 4 2 0 3
        Edges = (1, 2), (1, 3), (2, 4), 
                (2, 5), (4, 6), (6, 7)
Output : Maximum size of the subtree 
with even weighted nodes = 4 
Explanation : 
Subtree of nodes {2, 4, 5, 6} gives the maximum size.

Input : Number of nodes = 6
        Weights of nodes = 2 4 0 2 2 6
        Edges = (1, 2), (2, 3), (3, 4), 
                (4, 5), (1, 6)
Output : Maximum size of the subtree
with even weighted nodes = 6
Explanation : 
The given tree gives the maximum size.

 

Approach :We can find solution by simply running DFS on tree. DFS solution gives us answer in O(n). But, how can we use DSU for this problem? We first iterate through all edges. If both nodes are even in weights, we make union of them. Set of nodes with maximum size is the answer. If we use union-find with path compression then time complexity is O(n).
Below is the implementation of above approach : 
 

C++




// CPP code to find maximum subtree such
// that all nodes are even in weight
#include<bits/stdc++.h>
 
using namespace std;
 
#define N 100010
 
// Structure for Edge
struct Edge
{
    int u, v;
};
 
/*
    'id': stores parent of a node.
    'sz': stores size of a DSU tree.
*/
int id[N], sz[N];
 
// Function to assign root
int Root(int idx)
{
    int i = idx;
     
    while(i != id[i])
        id[i] = id[id[i]], i = id[i];
     
    return i;
}
 
// Function to find Union
void Union(int a, int b)
{
    int i = Root(a), j = Root(b);
     
    if (i != j)
    {
        if(sz[i] >= sz[j])
        {
            id[j] = i, sz[i] += sz[j];
            sz[j] = 0;
        }
        else
        {
            id[i] = j, sz[j] += sz[i];
            sz[i] = 0;
        }
    }
}
 
// Utility function for Union
void UnionUtil(struct Edge e[], int W[], int q)
{
 
    for(int i = 0; i < q; i++)
    {
        // Edge between 'u' and 'v'
        int u, v;
        u = e[i].u, v = e[i].v;
 
        // 0-indexed nodes
        u--, v--;
 
        // If weights of both 'u' and 'v'
        // are even then we make union of them.
        if(W[u] % 2 == 0 && W[v] % 2 == 0)
                    Union(u,v);
    }
}
 
// Function to find maximum
// size of DSU tree
int findMax(int n, int W[])
{
    int maxi = 0;
    for(int i = 1; i <= n; i++)
        if(W[i] % 2 == 0)
            maxi = max(maxi, sz[i]);  
             
    return maxi;
}
 
// Driver code
int main()
{
    /*
        Nodes are 0-indexed in this code
        So we have to make necessary changes
        while taking inputs
    */
 
    // Weights of nodes
    int W[] = {1, 2, 6, 4, 2, 0, 3};
 
    // Number of nodes in a tree
    int n = sizeof(W) / sizeof(W[0]);
 
    // Initializing every node as
    // a tree with single node.
    for(int i = 0; i < n; i++)
            id[i] = i, sz[i] = 1;
 
    Edge e[] = {{1, 2}, {1, 3}, {2, 4},
                {2, 5}, {4, 6}, {6, 7}};
 
    int q = sizeof(e) / sizeof(e[0]);
 
    UnionUtil(e, W, q);
 
    // Find maximum size of DSU tree.
    int maxi = findMax(n, W);
 
    printf("Maximum size of the subtree with ");
    printf("even weighted nodes = %d\n", maxi);
     
    return 0;
}

Java




// Java code to find maximum subtree such
// that all nodes are even in weight
class GFG
{
static int N = 100010;
 
// Structure for Edge
static class Edge
{
    int u, v;
 
    public Edge(int u, int v)
    {
        this.u = u;
        this.v = v;
    }
}
 
/*
'id': stores parent of a node.
'sz': stores size of a DSU tree.
*/
static int []id = new int[N];
static int []sz = new int[N];
 
// Function to assign root
static int Root(int idx)
{
    int i = idx;
     
    while(i != id[i])
    {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
 
// Function to find Union
static void Union(int a, int b)
{
    int i = Root(a), j = Root(b);
     
    if (i != j)
    {
        if(sz[i] >= sz[j])
        {
            id[j] = i;
            sz[i] += sz[j];
            sz[j] = 0;
        }
        else
        {
            id[i] = j;
            sz[j] += sz[i];
            sz[i] = 0;
        }
    }
}
 
// Utility function for Union
static void UnionUtil(Edge e[], int W[], int q)
{
    for(int i = 0; i < q; i++)
    {
        // Edge between 'u' and 'v'
        int u, v;
        u = e[i].u;
        v = e[i].v;
 
        // 0-indexed nodes
        u--;
        v--;
 
        // If weights of both 'u' and 'v'
        // are even then we make union of them.
        if(W[u] % 2 == 0 && W[v] % 2 == 0)
            Union(u, v);
    }
}
 
// Function to find maximum
// size of DSU tree
static int findMax(int n, int W[])
{
    int maxi = 0;
    for(int i = 1; i < n; i++)
        if(W[i] % 2 == 0)
            maxi = Math.max(maxi, sz[i]);
             
    return maxi;
}
 
// Driver code
public static void main(String[] args)
{
    /*
    Nodes are 0-indexed in this code
    So we have to make necessary changes
    while taking inputs
    */
 
    // Weights of nodes
    int W[] = {1, 2, 6, 4, 2, 0, 3};
 
    // Number of nodes in a tree
    int n = W.length;
 
    // Initializing every node as
    // a tree with single node.
    for(int i = 0; i < n; i++)
    {
        id[i] = i;
        sz[i] = 1;
    }
 
    Edge e[] = {new Edge(1, 2), new Edge(1, 3),
                new Edge(2, 4), new Edge(2, 5),
                new Edge(4, 6), new Edge(6, 7)};
 
    int q = e.length;
 
    UnionUtil(e, W, q);
 
    // Find maximum size of DSU tree.
    int maxi = findMax(n, W);
 
    System.out.printf("Maximum size of the subtree with ");
    System.out.printf("even weighted nodes = %d\n", maxi);
}
}
 
// This code is contributed by Rajput-Ji

Python3




# Python3 code to find maximum subtree such
# that all nodes are even in weight
N = 100010
  
# Structure for Edge
class Edge:
     
    def __init__(self, u, v):
        self.u = u
        self.v = v
     
'''
    'id': stores parent of a node.
    'sz': stores size of a DSU tree.
'''
 
id = [0 for i in range(N)]
sz = [0 for i in range(N)];
  
# Function to assign root
def Root(idx):
 
    i = idx;
      
    while(i != id[i]):
         
        id[i] = id[id[i]]
        i = id[i];
      
    return i;
 
# Function to find Union
def Union(a, b):
 
    i = Root(a)
    j = Root(b);
      
    if (i != j):
     
        if(sz[i] >= sz[j]):
         
            id[j] = i
            sz[i] += sz[j];
            sz[j] = 0;
        else:
         
            id[i] = j
            sz[j] += sz[i];
            sz[i] = 0;
         
# Utility function for Union
def UnionUtil( e, W, q):
     
    for i in range(q):
      
         # Edge between 'u' and 'v'
        u = e[i].u
        v = e[i].v
  
        # 0-indexed nodes
        u -= 1
        v -= 1
  
        # If weights of both 'u' and 'v'
        # are even then we make union of them.
        if(W[u] % 2 == 0 and W[v] % 2 == 0):
            Union(u, v);
     
# Function to find maximum
# size of DSU tree
def findMax(n, W):
 
    maxi = 0
     
    for i in range(1, n):
     
        if(W[i] % 2 == 0):
            maxi = max(maxi, sz[i]);  
              
    return maxi;
 
# Driver code
if __name__=='__main__':
     
    '''
        Nodes are 0-indexed in this code
        So we have to make necessary changes
        while taking inputs
    '''
  
    # Weights of nodes
    W = [1, 2, 6, 4, 2, 0, 3]
  
    # Number of nodes in a tree
    n = len(W)
  
    # Initializing every node as
    # a tree with single node.
    for i in range(n):
     
            id[i] = i
            sz[i] = 1;
  
    e = [Edge(1, 2), Edge(1, 3), Edge(2, 4),
                Edge(2, 5), Edge(4, 6), Edge(6, 7)]
  
    q = len(e)
  
    UnionUtil(e, W, q);
  
    # Find maximum size of DSU tree.
    maxi = findMax(n, W);
  
    print("Maximum size of the subtree with ", end='');
    print("even weighted nodes =", maxi);
      
# This code is contributed by rutvik_56

C#




// C# code to find maximum subtree such
// that all nodes are even in weight
using System;
 
class GFG
{
static int N = 100010;
 
// Structure for Edge
public class Edge
{
    public int u, v;
 
    public Edge(int u, int v)
    {
        this.u = u;
        this.v = v;
    }
}
 
/*
'id': stores parent of a node.
'sz': stores size of a DSU tree.
*/
static int []id = new int[N];
static int []sz = new int[N];
 
// Function to assign root
static int Root(int idx)
{
    int i = idx;
     
    while(i != id[i])
    {
        id[i] = id[id[i]];
        i = id[i];
    }
    return i;
}
 
// Function to find Union
static void Union(int a, int b)
{
    int i = Root(a), j = Root(b);
     
    if (i != j)
    {
        if(sz[i] >= sz[j])
        {
            id[j] = i;
            sz[i] += sz[j];
            sz[j] = 0;
        }
        else
        {
            id[i] = j;
            sz[j] += sz[i];
            sz[i] = 0;
        }
    }
}
 
// Utility function for Union
static void UnionUtil(Edge []e, int []W, int q)
{
    for(int i = 0; i < q; i++)
    {
        // Edge between 'u' and 'v'
        int u, v;
        u = e[i].u;
        v = e[i].v;
 
        // 0-indexed nodes
        u--;
        v--;
 
        // If weights of both 'u' and 'v'
        // are even then we make union of them.
        if(W[u] % 2 == 0 && W[v] % 2 == 0)
            Union(u, v);
    }
}
 
// Function to find maximum
// size of DSU tree
static int findMax(int n, int []W)
{
    int maxi = 0;
    for(int i = 1; i < n; i++)
        if(W[i] % 2 == 0)
            maxi = Math.Max(maxi, sz[i]);
             
    return maxi;
}
 
// Driver code
public static void Main(String[] args)
{
    /*
    Nodes are 0-indexed in this code
    So we have to make necessary changes
    while taking inputs
    */
 
    // Weights of nodes
    int []W = {1, 2, 6, 4, 2, 0, 3};
 
    // Number of nodes in a tree
    int n = W.Length;
 
    // Initializing every node as
    // a tree with single node.
    for(int i = 0; i < n; i++)
    {
        id[i] = i;
        sz[i] = 1;
    }
 
    Edge []e = {new Edge(1, 2), new Edge(1, 3),
                new Edge(2, 4), new Edge(2, 5),
                new Edge(4, 6), new Edge(6, 7)};
 
    int q = e.Length;
 
    UnionUtil(e, W, q);
 
    // Find maximum size of DSU tree.
    int maxi = findMax(n, W);
 
    Console.Write("Maximum size of the subtree with ");
    Console.WriteLine("even weighted nodes = {0}\n", maxi);
}
}
 
// This code is contributed by Princi Singh
Output: 
Maximum size of the subtree with even weighted nodes = 4

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :