Discrete Mathematics | Representing Relations

Prerequisite – Introduction and types of Relations
Relations are represented using ordered pairs, matrix and digraphs:

  1. Ordered Pairs –
    In this set of ordered pairs of x and y are used to represent relation. In this corresponding values of x and y are represented using parenthesis.

    Example: {(1, 1), (2, 4), (3, 9), (4, 16), (5, 25)}
    This represent square of a number which means if x=1 then y = x*x = 1 and so on.

  2. Representing using Matrix –
    In this zero-one is used to represent the relationship that exists between two sets. In this if a element is present then it is represented by 1 else it is represented by 0. In this method it is easy to judge if a relation is reflexive, symmetric or transitive just by looking at the matrix.

    Suppose R is a relation from X={x1, x2, .....xn} to Y={y1, y2....yn}
    It is represented by :-
    M[i, j]={1, if (Xi, Yj) belongs to R
            0, if (Xi, Yj) does not belong to R}

    If A={1, 2, 3} and B={1, 2} and Relation R is
    R = {(2, 1), (3, 1), (3, 2)}
    then all corresponding value of Relation will be represented by “1” else “0”.

    It is represented as:

    It’s corresponding possible relations are:

  3. Digraph –
    A digraph is known was directed graph. It consists of set ‘V’ of vertices and with the edges ‘E’. Here E is represented by ordered pair of Vertices.
    In the edge (a, b), a is the initial vertex and b is the final vertex.
    If edge is (a, a) then this is regarded as loop.

    Example: Suppose we have relation forming

    R = {(1, 2), (1, 3), (1, 4), (2, 3), (2, 4), (3, 4)} 

    This relation is represented using digraph as:

    Attention reader! Don’t stop learning now. Get hold of all the important CS Theory concepts for SDE interviews with the CS Theory Course at a student-friendly price and become industry ready.

    My Personal Notes arrow_drop_up

    Check out this Author's contributed articles.

    If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

    Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.