Open In App

Dijkstra’s Shortest Path Algorithm using priority_queue of STL

Given a graph and a source vertex in graph, find shortest paths from source to all vertices in the given graph.

Input : Source = 0
Output :
Vertex Distance from Source
0 0
1 4
2 12
3 19
4 21
5 11
6 9
7 8
8 14

We have discussed Dijkstra’s shortest Path implementations.

The second implementation is time complexity wise better but is really complex as we have implemented our own priority queue. The Third implementation is simpler as it uses STL. The issue with third implementation is, it uses set which in turn uses Self-Balancing Binary Search Trees. For Dijkstra's algorithm, it is always recommended to use heap (or priority queue) as the required operations (extract minimum and decrease key) match with speciality of heap (or priority queue). However, the problem is, priority_queue doesn't support decrease key. To resolve this problem, do not update a key, but insert one more copy of it. So we allow multiple instances of same vertex in priority queue. This approach doesn't require decrease key operation and has below important properties.

Below is algorithm based on above idea.

1) Initialize distances of all vertices as infinite.
2) Create an empty priority_queue pq. Every item
of pq is a pair (weight, vertex). Weight (or
distance) is used as first item of pair
as first item is by default used to compare
two pairs
3) Insert source vertex into pq and make its
distance as 0.
4) While either pq doesn't become empty
a) Extract minimum distance vertex from pq.
Let the extracted vertex be u.
b) Loop through all adjacent of u and do
following for every vertex v.
// If there is a shorter path to v
// through u.
If dist[v] > dist[u] + weight(u, v)
(i) Update distance of v, i.e., do
dist[v] = dist[u] + weight(u, v)
(ii) Insert v into the pq (Even if v is
already there)

5) Print distance array dist[] to print all shortest
paths.

Below implementation of above idea: 

// Program to find Dijkstra's shortest path using
// priority_queue in STL
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f

// iPair ==> Integer Pair
typedef pair<int, int> iPair;

// This class represents a directed graph using
// adjacency list representation
class Graph {
    int V; // No. of vertices

    // In a weighted graph, we need to store vertex
    // and weight pair for every edge
    list<pair<int, int> >* adj;

public:
    Graph(int V); // Constructor

    // function to add an edge to graph
    void addEdge(int u, int v, int w);

    // prints shortest path from s
    void shortestPath(int s);
};

// Allocates memory for adjacency list
Graph::Graph(int V)
{
    this->V = V;
    adj = new list<iPair>[V];
}

void Graph::addEdge(int u, int v, int w)
{
    adj[u].push_back(make_pair(v, w));
    adj[v].push_back(make_pair(u, w));
}

// Prints shortest paths from src to all other vertices
void Graph::shortestPath(int src)
{
    // Create a priority queue to store vertices that
    // are being preprocessed. This is weird syntax in C++.
    // Refer below link for details of this syntax
    // https://www.geeksforgeeks.org/implement-min-heap-using-stl/amp/
    priority_queue<iPair, vector<iPair>, greater<iPair> >
        pq;

    // Create a vector for distances and initialize all
    // distances as infinite (INF)
    vector<int> dist(V, INF);

    // Insert source itself in priority queue and initialize
    // its distance as 0.
    pq.push(make_pair(0, src));
    dist[src] = 0;

    /* Looping till priority queue becomes empty (or all
    distances are not finalized) */
    while (!pq.empty()) {
        // The first vertex in pair is the minimum distance
        // vertex, extract it from priority queue.
        // vertex label is stored in second of pair (it
        // has to be done this way to keep the vertices
        // sorted distance (distance must be first item
        // in pair)
        int u = pq.top().second;
        pq.pop();

        // 'i' is used to get all adjacent vertices of a
        // vertex
        list<pair<int, int> >::iterator i;
        for (i = adj[u].begin(); i != adj[u].end(); ++i) {
            // Get vertex label and weight of current
            // adjacent of u.
            int v = (*i).first;
            int weight = (*i).second;

            // If there is shorted path to v through u.
            if (dist[v] > dist[u] + weight) {
                // Updating distance of v
                dist[v] = dist[u] + weight;
                pq.push(make_pair(dist[v], v));
            }
        }
    }

    // Print shortest distances stored in dist[]
    printf("Vertex Distance from Source\n");
    for (int i = 0; i < V; ++i)
        printf("%d \t\t %d\n", i, dist[i]);
}

// Driver program to test methods of graph class
int main()
{
    // create the graph given in above figure
    int V = 9;
    Graph g(V);

    // making above shown graph
    g.addEdge(0, 1, 4);
    g.addEdge(0, 7, 8);
    g.addEdge(1, 2, 8);
    g.addEdge(1, 7, 11);
    g.addEdge(2, 3, 7);
    g.addEdge(2, 8, 2);
    g.addEdge(2, 5, 4);
    g.addEdge(3, 4, 9);
    g.addEdge(3, 5, 14);
    g.addEdge(4, 5, 10);
    g.addEdge(5, 6, 2);
    g.addEdge(6, 7, 1);
    g.addEdge(6, 8, 6);
    g.addEdge(7, 8, 7);

    g.shortestPath(0);

    return 0;
}
// Java program for the above approach
import java.util.*;

// Class to represent a graph and implement Dijkstra's
// shortest path algorithm
class Graph {
    private int V; // Number of vertices
    private List<int[]>[] adj; // Adjacency list to store
                               // graph edges

    // Inner class to represent a pair of vertex and its
    // weight
    class iPair implements Comparable<iPair> {
        int vertex, weight;

        iPair(int v, int w)
        {
            vertex = v;
            weight = w;
        }

        // Comparison method for priority queue
        public int compareTo(iPair other)
        {
            return Integer.compare(this.weight,
                                   other.weight);
        }
    }

    // Constructor to initialize the graph
    Graph(int V)
    {
        this.V = V;
        adj = new ArrayList[V];
        for (int i = 0; i < V; ++i)
            adj[i] = new ArrayList<>();
    }

    // Method to add an edge to the graph
    void addEdge(int u, int v, int w)
    {
        adj[u].add(new int[] { v, w });
        adj[v].add(new int[] { u, w });
    }

    // Method to find the shortest paths from source vertex
    // to all other vertices
    void shortestPath(int src)
    {
        PriorityQueue<iPair> pq = new PriorityQueue<>();
        int[] dist = new int[V];
        Arrays.fill(dist, Integer.MAX_VALUE);

        pq.add(new iPair(src, 0));
        dist[src] = 0;

        // Dijkstra's algorithm
        while (!pq.isEmpty()) {
            int u = pq.poll().vertex;

            for (int[] neighbor : adj[u]) {
                int v = neighbor[0];
                int weight = neighbor[1];

                // Relaxation step
                if (dist[v] > dist[u] + weight) {
                    dist[v] = dist[u] + weight;
                    pq.add(new iPair(v, dist[v]));
                }
            }
        }

        // Print shortest distances from source
        System.out.println("Vertex Distance from Source");
        for (int i = 0; i < V; ++i)
            System.out.println(i + "\t\t" + dist[i]);
    }
}

// Main class containing the main method to test the graph
// and Dijkstra's algorithm
public class GFG {
    public static void main(String[] args)
    {
        int V = 9;
        Graph g = new Graph(V);

        // Adding edges to create the graph
        g.addEdge(0, 1, 4);
        g.addEdge(0, 7, 8);
        g.addEdge(1, 2, 8);
        g.addEdge(1, 7, 11);
        g.addEdge(2, 3, 7);
        g.addEdge(2, 8, 2);
        g.addEdge(2, 5, 4);
        g.addEdge(3, 4, 9);
        g.addEdge(3, 5, 14);
        g.addEdge(4, 5, 10);
        g.addEdge(5, 6, 2);
        g.addEdge(6, 7, 1);
        g.addEdge(6, 8, 6);
        g.addEdge(7, 8, 7);

        // Finding and printing the shortest paths from
        // source vertex 0
        g.shortestPath(0);
    }
}

// This code is contributed by Susobhan Akhuli
# Python program for the above approach
import heapq

# This class represents a directed graph using
# adjacency list representation
class Graph:
    def __init__(self, V):
        self.V = V  # No. of vertices
        self.adj = [[] for _ in range(V)]  # In a weighted graph, store vertex and weight pair for every edge

    # Function to add an edge to the graph
    def add_edge(self, u, v, w):
        self.adj[u].append((v, w))
        self.adj[v].append((u, w))

    # Prints shortest paths from src to all other vertices
    def shortest_path(self, src):
        # Create a priority queue to store vertices that
        # are being preprocessed.
        pq = [(0, src)]  # The first element of the tuple is the distance, and the second is the vertex label

        # Create a list for distances and initialize all
        # distances as infinite (INF)
        dist = [float('inf')] * self.V
        dist[src] = 0

        # Looping until the priority queue becomes empty
        while pq:
            # The first element in the tuple is the minimum distance vertex
            # Extract it from the priority queue
            current_dist, u = heapq.heappop(pq)

            # Iterate over all adjacent vertices of a vertex
            for v, weight in self.adj[u]:
                # If there is a shorter path to v through u
                if dist[v] > dist[u] + weight:
                    # Update the distance of v
                    dist[v] = dist[u] + weight
                    heapq.heappush(pq, (dist[v], v))

        # Print shortest distances
        print("Vertex Distance from Source")
        for i in range(self.V):
            print(f"{i}\t\t{dist[i]}")

# Driver program to test methods of the graph class
if __name__ == "__main__":
    # Create the graph given in the above figure
    V = 9
    g = Graph(V)

    # Making the above-shown graph
    g.add_edge(0, 1, 4)
    g.add_edge(0, 7, 8)
    g.add_edge(1, 2, 8)
    g.add_edge(1, 7, 11)
    g.add_edge(2, 3, 7)
    g.add_edge(2, 8, 2)
    g.add_edge(2, 5, 4)
    g.add_edge(3, 4, 9)
    g.add_edge(3, 5, 14)
    g.add_edge(4, 5, 10)
    g.add_edge(5, 6, 2)
    g.add_edge(6, 7, 1)
    g.add_edge(6, 8, 6)
    g.add_edge(7, 8, 7)

    g.shortest_path(0)

# This code is contributed by Susobhan Akhuli
// C# program for the above approach
using System;
using System.Collections.Generic;

// Class to represent a graph
class Graph
{
    private int V; // No. of vertices
    private List<Tuple<int, int>>[] adj;

    // iPair ==> Integer Pair
    public Graph(int V)
    {
        this.V = V;
        adj = new List<Tuple<int, int>>[V];
        for (int i = 0; i < V; ++i)
            adj[i] = new List<Tuple<int, int>>();
    }

    // function to add an edge to graph
    public void addEdge(int u, int v, int w)
    {
        adj[u].Add(new Tuple<int, int>(v, w));
        adj[v].Add(new Tuple<int, int>(u, w));
    }

    // prints shortest paths from src
    public void shortestPath(int src)
    {
        // Create a sorted set to store vertices that
        // are being preprocessed.
        SortedSet<Tuple<int, int>> pq = new SortedSet<Tuple<int, int>>(Comparer<Tuple<int, int>>.Create((a, b) =>
        {
            int cmp = a.Item1.CompareTo(b.Item1);
            return cmp == 0 ? a.Item2.CompareTo(b.Item2) : cmp;
        }));

        // Create a vector for distances and initialize all
        // distances as infinite (INF)
        int[] dist = new int[V];
        for (int i = 0; i < V; ++i)
            dist[i] = int.MaxValue;

        // Insert source itself in the sorted set and initialize
        // its distance as 0.
        pq.Add(new Tuple<int, int>(0, src));
        dist[src] = 0;

        /* Looping till the sorted set becomes empty (or all
        distances are not finalized) */
        while (pq.Count > 0)
        {
            // The first vertex in tuple is the minimum distance
            // vertex, extract it from the sorted set.
            // vertex label is stored in the second element of the tuple.
            // (it has to be done this way to keep the vertices
            // sorted by distance, where distance must be the first item
            // in the tuple)
            int u = pq.Min.Item2;
            pq.Remove(pq.Min);

            // 'i' is used to get all adjacent vertices of a
            // vertex
            foreach (var i in adj[u])
            {
                // Get vertex label and weight of the current
                // adjacent vertex of u.
                int v = i.Item1;
                int weight = i.Item2;

                // If there is a shorter path to v through u.
                if (dist[v] > dist[u] + weight)
                {
                    // Updating distance of v
                    pq.Add(new Tuple<int, int>(dist[u] + weight, v));
                    dist[v] = dist[u] + weight;
                }
            }
        }

        // Print shortest distances stored in dist[]
        Console.WriteLine("Vertex Distance from Source");
        for (int i = 0; i < V; ++i)
            Console.WriteLine(i + "\t\t" + dist[i]);
    }
}

// Driver program to test methods of the graph class
class GFG
{
    static void Main()
    {
        // Create the graph given in the above figure
        int V = 9;
        Graph g = new Graph(V);

        // making above shown graph
        g.addEdge(0, 1, 4);
        g.addEdge(0, 7, 8);
        g.addEdge(1, 2, 8);
        g.addEdge(1, 7, 11);
        g.addEdge(2, 3, 7);
        g.addEdge(2, 8, 2);
        g.addEdge(2, 5, 4);
        g.addEdge(3, 4, 9);
        g.addEdge(3, 5, 14);
        g.addEdge(4, 5, 10);
        g.addEdge(5, 6, 2);
        g.addEdge(6, 7, 1);
        g.addEdge(6, 8, 6);
        g.addEdge(7, 8, 7);

        g.shortestPath(0);
    }
}

// This code is contributed by Susobhan Akhuli
class PriorityQueue {
    constructor() {
        this.queue = [];
    }

    enqueue(element) {
        this.queue.push(element);
        this.queue.sort((a, b) => a[0] - b[0]);
    }

    dequeue() {
        if (this.isEmpty()) return "Queue is empty";
        return this.queue.shift();
    }

    isEmpty() {
        return this.queue.length === 0;
    }
}

class Graph {
    constructor(V) {
        this.V = V;
        this.adj = new Array(V).fill().map(() => []);
    }

    addEdge(u, v, w) {
        this.adj[u].push([v, w]);
        this.adj[v].push([u, w]);
    }

    shortestPath(src) {
        const pq = new PriorityQueue();
        const dist = new Array(this.V).fill(Infinity);

        pq.enqueue([0, src]);
        dist[src] = 0;

        while (!pq.isEmpty()) {
            const [uDist, u] = pq.dequeue();

            for (const [v, weight] of this.adj[u]) {
                if (dist[v] > dist[u] + weight) {
                    dist[v] = dist[u] + weight;
                    pq.enqueue([dist[v], v]);
                }
            }
        }

        console.log("Vertex Distance from Source");
        for (let i = 0; i < this.V; ++i) {
            console.log(i + "\t\t" + dist[i]);
        }
    }
}

// Driver program to test methods of the graph class
function main() {
    // create the graph given in the provided C++ code
    const V = 9;
    const g = new Graph(V);

    g.addEdge(0, 1, 4);
    g.addEdge(0, 7, 8);
    g.addEdge(1, 2, 8);
    g.addEdge(1, 7, 11);
    g.addEdge(2, 3, 7);
    g.addEdge(2, 8, 2);
    g.addEdge(2, 5, 4);
    g.addEdge(3, 4, 9);
    g.addEdge(3, 5, 14);
    g.addEdge(4, 5, 10);
    g.addEdge(5, 6, 2);
    g.addEdge(6, 7, 1);
    g.addEdge(6, 8, 6);
    g.addEdge(7, 8, 7);

    g.shortestPath(0);
}

// Call the main function
main();

Output
Vertex Distance from Source
0          0
1          4
2          12
3          19
4          21
5          11
6          9
7          8
8          14

Time complexity : O(E log V)

Space Complexity:O(V2) , here V is number of Vertices.

A Quicker Implementation using vector of pairs representation of weighted graph

// Program to find Dijkstra's shortest path using
// priority_queue in STL
#include <bits/stdc++.h>
using namespace std;
#define INF 0x3f3f3f3f

// iPair ==> Integer Pair
typedef pair<int, int> iPair;

// To add an edge
void addEdge(vector<pair<int, int> > adj[], int u, int v,
             int wt)
{
    adj[u].push_back(make_pair(v, wt));
    adj[v].push_back(make_pair(u, wt));
}

// Prints shortest paths from src to all other vertices
void shortestPath(vector<pair<int, int> > adj[], int V,
                  int src)
{
    // Create a priority queue to store vertices that
    // are being preprocessed. This is weird syntax in C++.
    // Refer below link for details of this syntax
    // https://www.geeksforgeeks.org/implement-min-heap-using-stl/amp/
    priority_queue<iPair, vector<iPair>, greater<iPair> >
        pq;

    // Create a vector for distances and initialize all
    // distances as infinite (INF)
    vector<int> dist(V, INF);

    // Insert source itself in priority queue and initialize
    // its distance as 0.
    pq.push(make_pair(0, src));
    dist[src] = 0;

    /* Looping till priority queue becomes empty (or all
    distances are not finalized) */
    while (!pq.empty()) {
        // The first vertex in pair is the minimum distance
        // vertex, extract it from priority queue.
        // vertex label is stored in second of pair (it
        // has to be done this way to keep the vertices
        // sorted distance (distance must be first item
        // in pair)
        int u = pq.top().second;
        pq.pop();

        // Get all adjacent of u.
        for (auto x : adj[u]) {
            // Get vertex label and weight of current
            // adjacent of u.
            int v = x.first;
            int weight = x.second;

            // If there is shorted path to v through u.
            if (dist[v] > dist[u] + weight) {
                // Updating distance of v
                dist[v] = dist[u] + weight;
                pq.push(make_pair(dist[v], v));
            }
        }
    }

    // Print shortest distances stored in dist[]
    printf("Vertex Distance from Source\n");
    for (int i = 0; i < V; ++i)
        printf("%d \t\t %d\n", i, dist[i]);
}

// Driver program to test methods of graph class
int main()
{
    int V = 9;
    vector<iPair> adj[V];

    // making above shown graph
    addEdge(adj, 0, 1, 4);
    addEdge(adj, 0, 7, 8);
    addEdge(adj, 1, 2, 8);
    addEdge(adj, 1, 7, 11);
    addEdge(adj, 2, 3, 7);
    addEdge(adj, 2, 8, 2);
    addEdge(adj, 2, 5, 4);
    addEdge(adj, 3, 4, 9);
    addEdge(adj, 3, 5, 14);
    addEdge(adj, 4, 5, 10);
    addEdge(adj, 5, 6, 2);
    addEdge(adj, 6, 7, 1);
    addEdge(adj, 6, 8, 6);
    addEdge(adj, 7, 8, 7);

    shortestPath(adj, V, 0);

    return 0;
}
// Java program for the above approach
import java.util.*;

class GFG {
    private static final int INF = 0x3f3f3f3f;

    // To add an edge
    static void
    addEdge(List<List<Pair<Integer, Integer> > > adj, int u,
            int v, int wt)
    {
        adj.get(u).add(new Pair<>(v, wt));
        adj.get(v).add(new Pair<>(u, wt));
    }

    // Prints shortest paths from src to all other vertices
    static void
    shortestPath(List<List<Pair<Integer, Integer> > > adj,
                 int V, int src)
    {
        // Create a priority queue to store vertices that
        // are being preprocessed.
        PriorityQueue<Pair<Integer, Integer> > pq
            = new PriorityQueue<>(
                Comparator.comparingInt(Pair::getFirst));

        // Create a list for distances and initialize all
        // distances as infinite (INF)
        List<Integer> dist
            = new ArrayList<>(Collections.nCopies(V, INF));

        // Insert source itself in priority queue and
        // initialize its distance as 0.
        pq.add(new Pair<>(0, src));
        dist.set(src, 0);

        /* Looping till priority queue becomes empty (or all
        distances are not finalized) */
        while (!pq.isEmpty()) {
            // The first vertex in pair is the minimum
            // distance vertex, extract it from priority
            // queue. vertex label is stored in second of
            // pair (it has to be done this way to keep the
            // vertices sorted distance (distance must be
            // first item in pair)
            int u = pq.peek().getSecond();
            pq.poll();

            // Get all adjacent of u.
            for (Pair<Integer, Integer> x : adj.get(u)) {
                // Get vertex label and weight of current
                // adjacent of u.
                int v = x.getFirst();
                int weight = x.getSecond();

                // If there is a shorter path to v through
                // u.
                if (dist.get(v) > dist.get(u) + weight) {
                    // Updating distance of v
                    dist.set(v, dist.get(u) + weight);
                    pq.add(new Pair<>(dist.get(v), v));
                }
            }
        }

        // Print shortest distances stored in dist[]
        System.out.println("Vertex Distance from Source");
        for (int i = 0; i < V; i++) {
            System.out.printf("%d \t\t %d\n", i,
                              dist.get(i));
        }
    }

    // Driver program to test methods of graph class
    public static void main(String[] args)
    {
        int V = 9;
        List<List<Pair<Integer, Integer> > > adj
            = new ArrayList<>(V);

        for (int i = 0; i < V; i++) {
            adj.add(new ArrayList<>());
        }

        // Making the above-shown graph
        addEdge(adj, 0, 1, 4);
        addEdge(adj, 0, 7, 8);
        addEdge(adj, 1, 2, 8);
        addEdge(adj, 1, 7, 11);
        addEdge(adj, 2, 3, 7);
        addEdge(adj, 2, 8, 2);
        addEdge(adj, 2, 5, 4);
        addEdge(adj, 3, 4, 9);
        addEdge(adj, 3, 5, 14);
        addEdge(adj, 4, 5, 10);
        addEdge(adj, 5, 6, 2);
        addEdge(adj, 6, 7, 1);
        addEdge(adj, 6, 8, 6);
        addEdge(adj, 7, 8, 7);

        shortestPath(adj, V, 0);
    }
}

class Pair<T, U> {
    private T first;
    private U second;

    public Pair(T first, U second)
    {
        this.first = first;
        this.second = second;
    }

    public T getFirst() { return first; }

    public U getSecond() { return second; }
}

// This code is contributed by Susobhan Akhuli
import heapq

# Function to add an edge to the adjacency list
def addEdge(adj, u, v, wt):
    adj[u].append((v, wt))
    adj[v].append((u, wt))

# Function to find the shortest paths from source to all other vertices
def shortestPath(adj, V, src):
    # Create a priority queue to store vertices that are being preprocessed
    pq = []

    # Create an array for distances and initialize all distances as infinite (INF)
    dist = [float('inf')] * V

    # Insert source itself in the priority queue and initialize its distance as 0
    heapq.heappush(pq, (0, src))
    dist[src] = 0

    # Loop until the priority queue becomes empty
    while pq:
        # Extract the vertex with minimum distance from the priority queue
        distance, u = heapq.heappop(pq)

        # Get all adjacent vertices of u
        for v, weight in adj[u]:
            # If there is a shorter path to v through u
            if dist[v] > dist[u] + weight:
                # Update distance of v
                dist[v] = dist[u] + weight
                heapq.heappush(pq, (dist[v], v))

    # Print shortest distances stored in dist[]
    print("Vertex Distance from Source")
    for i in range(V):
        print(i,"   ",dist[i])

# Main function
def main():
    V = 9
    adj = [[] for _ in range(V)]

    # Making the graph
    addEdge(adj, 0, 1, 4)
    addEdge(adj, 0, 7, 8)
    addEdge(adj, 1, 2, 8)
    addEdge(adj, 1, 7, 11)
    addEdge(adj, 2, 3, 7)
    addEdge(adj, 2, 8, 2)
    addEdge(adj, 2, 5, 4)
    addEdge(adj, 3, 4, 9)
    addEdge(adj, 3, 5, 14)
    addEdge(adj, 4, 5, 10)
    addEdge(adj, 5, 6, 2)
    addEdge(adj, 6, 7, 1)
    addEdge(adj, 6, 8, 6)
    addEdge(adj, 7, 8, 7)

    # Finding shortest paths from source vertex 0
    shortestPath(adj, V, 0)

# Call the main function to execute the program
if __name__ == "__main__":
    main()
// C# program for the above approach
using System;
using System.Collections.Generic;

// Implement Priority Queue
public class PriorityQueue<T> where T : IComparable<T> {
    private List<T> heap;

    public PriorityQueue() { heap = new List<T>(); }

    public int Count => heap.Count;

    public void Enqueue(T item)
    {
        heap.Add(item);
        int i = heap.Count - 1;
        while (i > 0) {
            int parent = (i - 1) / 2;
            if (heap[parent].CompareTo(heap[i]) <= 0)
                break;
            Swap(parent, i);
            i = parent;
        }
    }

    public T Peek()
    {
        if (heap.Count == 0)
            throw new InvalidOperationException(
                "Priority queue is empty");
        return heap[0];
    }

    public T Dequeue()
    {
        if (heap.Count == 0)
            throw new InvalidOperationException(
                "Priority queue is empty");
        T result = heap[0];
        int lastIndex = heap.Count - 1;
        heap[0] = heap[lastIndex];
        heap.RemoveAt(lastIndex);
        lastIndex--;
        int current = 0;
        while (true) {
            int leftChild = current * 2 + 1;
            int rightChild = current * 2 + 2;
            if (leftChild > lastIndex)
                break;
            int minChild = leftChild;
            if (rightChild <= lastIndex
                && heap[rightChild].CompareTo(
                       heap[leftChild])
                       < 0)
                minChild = rightChild;
            if (heap[current].CompareTo(heap[minChild])
                <= 0)
                break;
            Swap(current, minChild);
            current = minChild;
        }
        return result;
    }

    private void Swap(int i, int j)
    {
        T temp = heap[i];
        heap[i] = heap[j];
        heap[j] = temp;
    }
}

// To store an integer pair
public class Pair : IComparable<Pair> {
    public int first, second;

    public Pair(int first, int second)
    {
        this.first = first;
        this.second = second;
    }

    public int CompareTo(Pair other)
    {
        return this.second.CompareTo(other.second);
    }
}

public class GFG {
    // Function to add an edge to the graph
    static void AddEdge(List<Pair>[] adj, int u, int v,
                        int wt)
    {
        adj[u].Add(new Pair(v, wt));
        adj[v].Add(new Pair(u, wt));
    }

    // Function to print shortest paths from source to all
    // other vertices
    static void ShortestPath(List<Pair>[] adj, int V,
                             int src)
    {
        // Create a priority queue to store vertices that
        // are being preprocessed
        PriorityQueue<Pair> pq = new PriorityQueue<Pair>();

        // Create an array for distances and initialize all
        // distances as infinite
        int[] dist = new int[V];
        Array.Fill(dist, int.MaxValue);

        // Insert source itself in priority queue and
        // initialize its distance as 0
        pq.Enqueue(new Pair(src, 0));
        dist[src] = 0;

        // Loop until priority queue becomes empty
        while (pq.Count > 0) {
            // Extract the minimum distance vertex from
            // priority queue
            int u = pq.Peek().first;
            pq.Dequeue();

            // Get all adjacent vertices of u
            foreach(var x in adj[u])
            {
                int v = x.first;
                int weight = x.second;

                // If there is a shorter path to v through u
                if (dist[v] > dist[u] + weight) {
                    // Update distance of v
                    dist[v] = dist[u] + weight;
                    pq.Enqueue(new Pair(v, dist[v]));
                }
            }
        }

        // Print shortest distances stored in dist[]
        Console.WriteLine("Vertex Distance from Source");
        for (int i = 0; i < V; ++i) {
            Console.WriteLine($"{i}\t\t{dist[i]}");
        }
    }

    // Driver program to test methods of graph class
    static void Main(string[] args)
    {
        int V = 9;
        List<Pair>[] adj = new List<Pair>[ V ];

        // Initialize adjacency list
        for (int i = 0; i < V; i++) {
            adj[i] = new List<Pair>();
        }

        // Making above shown graph
        AddEdge(adj, 0, 1, 4);
        AddEdge(adj, 0, 7, 8);
        AddEdge(adj, 1, 2, 8);
        AddEdge(adj, 1, 7, 11);
        AddEdge(adj, 2, 3, 7);
        AddEdge(adj, 2, 8, 2);
        AddEdge(adj, 2, 5, 4);
        AddEdge(adj, 3, 4, 9);
        AddEdge(adj, 3, 5, 14);
        AddEdge(adj, 4, 5, 10);
        AddEdge(adj, 5, 6, 2);
        AddEdge(adj, 6, 7, 1);
        AddEdge(adj, 6, 8, 6);
        AddEdge(adj, 7, 8, 7);

        ShortestPath(adj, V, 0);
    }
}

// This code is contributed by Susobhan Akhuli
// Function to add an edge to the adjacency list
function addEdge(adj, u, v, wt) {
    adj[u].push([v, wt]);
    adj[v].push([u, wt]);
}

// Function to find the shortest paths from source to all other vertices
function shortestPath(adj, V, src) {
    // Create a priority queue to store vertices that are being preprocessed
    let pq = [];

    // Create an array for distances and initialize all distances as infinite (INF)
    let dist = new Array(V).fill(Number.POSITIVE_INFINITY);

    // Insert source itself in the priority queue and initialize its distance as 0
    pq.push([0, src]);
    dist[src] = 0;

    // Loop until the priority queue becomes empty
    while (pq.length > 0) {
        // Extract the vertex with minimum distance from the priority queue
        let [distance, u] = pq.shift();

        // Get all adjacent vertices of u
        for (let i = 0; i < adj[u].length; i++) {
            let [v, weight] = adj[u][i];

            // If there is a shorter path to v through u
            if (dist[v] > dist[u] + weight) {
                // Update distance of v
                dist[v] = dist[u] + weight;
                pq.push([dist[v], v]);
            }
        }
        // Sort the priority queue based on distance
        pq.sort((a, b) => a[0] - b[0]);
    }

    // Print shortest distances stored in dist[]
    console.log("Vertex Distance from Source");
    for (let i = 0; i < V; i++) {
        console.log(i + "\t\t" + dist[i]);
    }
}

// Main function
function main() {
    const V = 9;
    const adj = Array.from({ length: V }, () => []);

    // Making the graph
    addEdge(adj, 0, 1, 4);
    addEdge(adj, 0, 7, 8);
    addEdge(adj, 1, 2, 8);
    addEdge(adj, 1, 7, 11);
    addEdge(adj, 2, 3, 7);
    addEdge(adj, 2, 8, 2);
    addEdge(adj, 2, 5, 4);
    addEdge(adj, 3, 4, 9);
    addEdge(adj, 3, 5, 14);
    addEdge(adj, 4, 5, 10);
    addEdge(adj, 5, 6, 2);
    addEdge(adj, 6, 7, 1);
    addEdge(adj, 6, 8, 6);
    addEdge(adj, 7, 8, 7);

    // Finding shortest paths from source vertex 0
    shortestPath(adj, V, 0);
}

// Call the main function to execute the program
main();

Output
Vertex Distance from Source
0          0
1          4
2          12
3          19
4          21
5          11
6          9
7          8
8          14

The time complexity of Dijkstra's algorithm using a priority queue implemented with a binary heap is O(Elog(V)), where E is the number of edges and V is the number of vertices in the graph.

The space complexity of this implementation is O(V+E), where V is the number of vertices and E is the number of edges. 

#include <iostream>
#include <vector>
#include <queue>
#include <unordered_map>

using namespace std;

// Define a struct Node to store the values
struct Node {
    int v;
    int distance;

    // Define a comparator method to compare distance of two nodes
    bool operator<(const Node& other) const {
        return distance > other.distance;
    }
};

// Function to implement Dijkstra Algorithm to find shortest distance
vector<int> dijkstra(int V, vector<vector<pair<int, int>>>& adj, int S) {
    // Initialize a visited array and map
    vector<bool> visited(V, false);
    unordered_map<int, Node> m;
    
    // Initialize a priority queue
    priority_queue<Node> pq;

    // Insert source node into map
    m[S] = {S, 0};
    // Add source node to priority queue
    pq.push({S, 0});

    // While the priority queue is not empty
    while (!pq.empty()) {
        // Pop the node with the minimum distance from priority queue
        Node n = pq.top();
        pq.pop();

        // Get the vertex and distance
        int v = n.v;
        int distance = n.distance;

        // Mark the vertex as visited
        visited[v] = true;

        // Get the adjacency list of the vertex
        vector<pair<int, int>> adjList = adj[v];

        // For every adjacent node of the vertex
        for (const auto& edge : adjList) {
            // If the node is not yet visited
            if (!visited[edge.first]) {
                // If the node is not present in the map
                if (m.find(edge.first) == m.end()) {
                    // Put the node in the map
                    m[edge.first] = {v, distance + edge.second};
                } else {
                    // Get the node from the map
                    Node& sn = m[edge.first];

                    // Check if the new distance is less than the current distance of the node
                    if (distance + edge.second < sn.distance) {
                        // Update the node's distance
                        sn.v = v;
                        sn.distance = distance + edge.second;
                    }
                }

                // Push the node to the priority queue
                pq.push({edge.first, distance + edge.second});
            }
        }
    }

    // Initialize a result vector
    vector<int> result(V, 0);

    // For every key in the map
    for (const auto& entry : m) {
        // Add the distance of the node to the result
        result[entry.first] = entry.second.distance;
    }

    // Return the result vector
    return result;
}

int main() {
    // Initialize adjacency list and map
    vector<vector<pair<int, int>>> adj;
    unordered_map<int, vector<pair<int, int>>> m;

    // Initialize number of vertices and edges
    int V = 6;
    int E = 5;

    // Define u, v, and w
    vector<int> u = {0, 0, 1, 2, 4};
    vector<int> v = {3, 5, 4, 5, 5};
    vector<int> w = {9, 4, 4, 10, 3};

    // For every edge
    for (int i = 0; i < E; ++i) {
        // Create an edge pair
        pair<int, int> edge = {v[i], w[i]};

        // If u[i] is not present in map
        if (m.find(u[i]) == m.end()) {
            // Create a new adjacency list
            vector<pair<int, int>> adjList;
            m[u[i]] = adjList;
        }

        // Add the edge to the adjacency list
        m[u[i]].push_back(edge);

        // Create another edge pair
        pair<int, int> edge2 = {u[i], w[i]};

        // If v[i] is not present in map
        if (m.find(v[i]) == m.end()) {
            // Create a new adjacency list
            vector<pair<int, int>> adjList2;
            m[v[i]] = adjList2;
        }

        // Add the edge to the adjacency list
        m[v[i]].push_back(edge2);
    }

    // For every vertex
    for (int i = 0; i < V; ++i) {
        // If the vertex is present in map
        if (m.find(i) != m.end()) {
            // Add the adjacency list to the main adjacency list
            adj.push_back(m[i]);
        } else {
            // Add null to the main adjacency list
            adj.push_back({});
        }
    }

    // Define source node
    int S = 1;

    // Call the dijkstra function
    vector<int> result = dijkstra(V, adj, S);

    // Print the result in the specified format
    cout << "[";
    for (int i = 0; i < V; ++i) {
        if (i > 0) {
            cout << ", ";
        }
        cout << result[i];
    }
    cout << "]";

    return 0;
}
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashMap;
import java.util.PriorityQueue;

public class DijkstraAlgoForShortestDistance {

    static class Node implements Comparable<Node> {
        int v;
        int distance;

        public Node(int v, int distance)
        {
            this.v = v;
            this.distance = distance;
        }

        @Override public int compareTo(Node n)
        {
            if (this.distance <= n.distance) {
                return -1;
            }
            else {
                return 1;
            }
        }
    }

    static int[] dijkstra(
        int V,
        ArrayList<ArrayList<ArrayList<Integer> > > adj,
        int S)
    {
        boolean[] visited = new boolean[V];
        HashMap<Integer, Node> map = new HashMap<>();
        PriorityQueue<Node> q = new PriorityQueue<>();

        map.put(S, new Node(S, 0));
        q.add(new Node(S, 0));

        while (!q.isEmpty()) {
            Node n = q.poll();
            int v = n.v;
            int distance = n.distance;
            visited[v] = true;

            ArrayList<ArrayList<Integer> > adjList
                = adj.get(v);
            for (ArrayList<Integer> adjLink : adjList) {

                if (visited[adjLink.get(0)] == false) {
                    if (!map.containsKey(adjLink.get(0))) {
                        map.put(
                            adjLink.get(0),
                            new Node(v,
                                     distance
                                         + adjLink.get(1)));
                    }
                    else {
                        Node sn = map.get(adjLink.get(0));
                        if (distance + adjLink.get(1)
                            < sn.distance) {
                            sn.v = v;
                            sn.distance
                                = distance + adjLink.get(1);
                        }
                    }
                    q.add(new Node(adjLink.get(0),
                                   distance
                                       + adjLink.get(1)));
                }
            }
        }

        int[] result = new int[V];
        for (int i = 0; i < V; i++) {
            result[i] = map.get(i).distance;
        }

        return result;
    }

    public static void main(String[] args)
    {
        ArrayList<ArrayList<ArrayList<Integer> > > adj
            = new ArrayList<>();
        HashMap<Integer, ArrayList<ArrayList<Integer> > >
            map = new HashMap<>();

        int V = 6;
        int E = 5;
        int[] u = { 0, 0, 1, 2, 4 };
        int[] v = { 3, 5, 4, 5, 5 };
        int[] w = { 9, 4, 4, 10, 3 };

        for (int i = 0; i < E; i++) {
            ArrayList<Integer> edge = new ArrayList<>();
            edge.add(v[i]);
            edge.add(w[i]);

            ArrayList<ArrayList<Integer> > adjList;
            if (!map.containsKey(u[i])) {
                adjList = new ArrayList<>();
            }
            else {
                adjList = map.get(u[i]);
            }
            adjList.add(edge);
            map.put(u[i], adjList);

            ArrayList<Integer> edge2 = new ArrayList<>();
            edge2.add(u[i]);
            edge2.add(w[i]);

            ArrayList<ArrayList<Integer> > adjList2;
            if (!map.containsKey(v[i])) {
                adjList2 = new ArrayList<>();
            }
            else {
                adjList2 = map.get(v[i]);
            }
            adjList2.add(edge2);
            map.put(v[i], adjList2);
        }

        for (int i = 0; i < V; i++) {
            if (map.containsKey(i)) {
                adj.add(map.get(i));
            }
            else {
                adj.add(null);
            }
        }
        int S = 1;

        // Input sample
        //[0 [[3, 9], [5, 4]],
        // 1 [[4, 4]],
        // 2 [[5, 10]],
        // 3 [[0, 9]],
        // 4 [[1, 4], [5, 3]],
        // 5 [[0, 4], [2, 10], [4, 3]]
        //]
        int[] result
            = DijkstraAlgoForShortestDistance.dijkstra(
                V, adj, S);
        System.out.println(Arrays.toString(result));
    }
}
#Python
#import modules
import heapq

#Define a class Node to store the values
class Node:
    def __init__(self, v, distance):
        self.v = v
        self.distance = distance
    #define a comparator method to compare distance of two nodes
    def __lt__(self, other):
        return self.distance < other.distance

#function to implement Dijkstra Algorithm to find shortest distance
def dijkstra(V, adj, S):
    #initialize a visited list and map
    visited = [False] * V
    map = {}
    #initialize a priority queue
    q = []
    #insert source node in map
    map[S] = Node(S, 0)
    #add source node to priority queue
    heapq.heappush(q, Node(S, 0))
    #while the priority queue is not empty
    while q:
        #pop the node with minimum distance from priority queue
        n = heapq.heappop(q)
        #get the vertex and distance
        v = n.v
        distance = n.distance
        #mark the vertex as visited
        visited[v] = True
        #get the adjacent list of the vertex
        adjList = adj[v]
        #for every adjacent node of the vertex
        for edge in adjList:
            #if the node is not yet visited
            if visited[edge[0]] == False:
                #if the node is not present in map
                if edge[0] not in map:
                    #put the node in map
                    map[edge[0]] = Node(v, distance + edge[1])
                else:
                    #get the node from map
                    sn = map[edge[0]]
                    #check if the new distance is less than the current distance of the node
                    if distance + edge[1] < sn.distance:
                        #update the node's distance
                        sn.v = v
                        sn.distance = distance + edge[1]
                #push the node to priority queue
                heapq.heappush(q, Node(edge[0], distance + edge[1]))
    #initialize a result list
    result = [0] * V
    #for every key in map
    for key in map.keys():
        #add the distance of the node to the result
        result[key] = map[key].distance
    #return the result list
    return result

#main function
if __name__ == '__main__':
    #initialize adjacency list and map
    adj = []
    map = {}
    #initialize number of vertices and edges
    V = 6
    E = 5
    #define u, v and w
    u = [0, 0, 1, 2, 4]
    v = [3, 5, 4, 5, 5]
    w = [9, 4, 4, 10, 3]

    #for every edge
    for i in range(E):
        #create an edge list
        edge = [v[i], w[i]]
        #if the u[i] is not present in map
        if u[i] not in map:
            #create a new adjacency list
            adjList = []
        else:
            #get the existing adjacency list
            adjList = map[u[i]]
        #add the edge to the adjacency list
        adjList.append(edge)
        #put the adjacency list in map
        map[u[i]] = adjList
        #create another edge list
        edge2 = [u[i], w[i]]
        #if the v[i] is not present in map
        if v[i] not in map:
            #create a new adjacency list
            adjList2 = []
        else:
            #get the existing adjacency list
            adjList2 = map[v[i]]
        #add the edge to the adjacency list
        adjList2.append(edge2)
        #put the adjacency list in map
        map[v[i]] = adjList2

    #for every vertex
    for i in range(V):
        #if the vertex is present in map
        if i in map:
            #add the adjacency list to the main adjacency list
            adj.append(map[i])
        else:
            #add null to the main adjacency list
            adj.append(None)
    #define source node
    S = 1
    #call the dijkstra function
    result = dijkstra(V, adj, S)
    #print the result
    print(result)
// Define a class Node to store the values
class Node {
    constructor(v, distance) {
        this.v = v;
        this.distance = distance;
    }
}

// Function to implement Dijkstra Algorithm to find the shortest distance
function dijkstra(V, adj, S) {
    // Initialize a visited list and map
    let visited = new Array(V).fill(false);
    let map = {};

    // Initialize a priority queue
    let q = [];
    // Insert source node in map
    map[S] = new Node(S, 0);
    // Add source node to priority queue
    q.push(new Node(S, 0));

    // While the priority queue is not empty
    while (q.length > 0) {
        // Pop the node with minimum distance from priority queue
        let n = q.shift();
        // Get the vertex and distance
        let v = n.v;
        let distance = n.distance;
        // Mark the vertex as visited
        visited[v] = true;
        // Get the adjacent list of the vertex
        let adjList = adj[v];
        // For every adjacent node of the vertex
        for (let edge of adjList) {
            // If the node is not yet visited
            if (!visited[edge[0]]) {
                // If the node is not present in map
                if (!(edge[0] in map)) {
                    // Create a new adjacency list
                    let adjList = [];
                    // Add the node to the adjacency list
                    adjList.push(new Node(v, distance + edge[1]));
                    // Put the adjacency list in map
                    map[edge[0]] = adjList;
                } else {
                    // Get the existing adjacency list
                    let adjList = map[edge[0]];
                    // Check if the new distance is less than the current distance of the node
                    if (distance + edge[1] < adjList[0].distance) {
                        // Update the node's distance
                        adjList[0].v = v;
                        adjList[0].distance = distance + edge[1];
                    }
                }
                // Push the node to priority queue
                q.push(new Node(edge[0], distance + edge[1]));
                // Sort the priority queue based on distance
                q.sort((a, b) => a.distance - b.distance);
            }
        }
    }

    // Initialize a result list
    let result = new Array(V).fill(0);
    // For every key in map
    for (let key in map) {
        // Check if map[key] is not empty
        if (map[key].length > 0) {
            // Add the distance of the node to the result
            result[key] = map[key][0].distance;
        }
    }
    // Return the result list
    return result;
}

// Main function
function main() {
    // Initialize adjacency list and map
    let adj = [];
    let map = {};
    // Initialize number of vertices and edges
    let V = 6;
    let E = 5;
    // Define u, v, and w
    let u = [0, 0, 1, 2, 4];
    let v = [3, 5, 4, 5, 5];
    let w = [9, 4, 4, 10, 3];

    // For every edge
    for (let i = 0; i < E; i++) {
        // If the u[i] is not present in map
        if (!(u[i] in map)) {
            // Create a new adjacency list
            map[u[i]] = [];
        }
        // Add the node to the adjacency list
        map[u[i]].push([v[i], w[i]]);

        // If the v[i] is not present in map
        if (!(v[i] in map)) {
            // Create a new adjacency list
            map[v[i]] = [];
        }
        // Add the node to the adjacency list
        map[v[i]].push([u[i], w[i]]);
    }

    // For every vertex
    for (let i = 0; i < V; i++) {
        // If the vertex is present in map
        if (i in map) {
            // Add the adjacency list to the main adjacency list
            adj.push(map[i]);
        } else {
            // Add null to the main adjacency list
            adj.push(null);
        }
    }

    // Define source node
    let S = 1;
    // Call the dijkstra function
    let result = dijkstra(V, adj, S);
    // Print the result
    console.log(result);
}

// Call the main function
main();


// This code is contributed by shivamgupta0987654321

Output
[11, 0, 17, 20, 4, 7]

Time Complexity: O(ElogV)
The time complexity is O(ElogV) where E is the number of edges and V is the number of vertices. This is because, for each vertex, we need to traverse all its adjacent vertices and update their distances, which takes O(E) time. Also, we use a Priority Queue which takes O(logV) time for each insertion and deletion.

Space Complexity: O(V)
The space complexity is O(V) as we need to maintain a visited array of size V, a map of size V and a Priority Queue of size V.

Further Optimization We can use a flag array to store what all vertices have been extracted from priority queue. This way we can avoid updating weights of items that have already been extracted. Please see this for optimized implementa Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above

Article Tags :