Related Articles

Related Articles

Different plotting using pandas and matplotlib
  • Last Updated : 15 Jan, 2019

We have different types of plots in matplotlib library which can help us to make a suitable graph as you needed. As per the given data, we can make a lot of graph and with the help of pandas, we can create a dataframe before doing plotting of data. Let’s discuss the different types of plot in matplotlib by using Pandas.

Use these commands to install matplotlib, pandas and numpy:

pip install matplotlib
pip install pandas
pip install numpy

Types of Plots:

  1. Basic plotting: In this basic plot we can use the randomly generated data to plot graph using series and matplotlib.
    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # import libraries
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
      
    ts = pd.Series(np.random.randn(1000), index = pd.date_range(
                                    '1/1/2000', periods = 1000))
    ts = ts.cumsum()
    ts.plot()
      
    plt.show()

    chevron_right

    
    

    Output:

  2. Plot of different data: Using more than one list of data in a plot.
    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # importing libraries
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
      
    ts = pd.Series(np.random.randn(1000), index = pd.date_range(
                                    '1/1/2000', periods = 1000))
      
    df = pd.DataFrame(np.random.randn(1000, 4), 
       index = ts.index, columns = list('ABCD'))
      
    df = df.cumsum()
    plt.figure()
    df.plot()
    plt.show()

    chevron_right

    
    

    Output:

  3. Plot on given axis: We can explicitly define the name of axis and plot the data on the basis of this axis.
    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # importing libraries
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
      
    ts = pd.Series(np.random.randn(1000), index = pd.date_range(
                                    '1/1/2000', periods = 1000))
      
    df = pd.DataFrame(np.random.randn(1000, 4), index = ts.index,
                                          columns = list('ABCD'))
      
    df3 = pd.DataFrame(np.random.randn(1000, 2),
                   columns =['B', 'C']).cumsum()
      
    df3['A'] = pd.Series(list(range(len(df))))
    df3.plot(x ='A', y ='B')
    plt.show()

    chevron_right

    
    

    Output:

  4. Bar plot using matplotlib: Find different types of bar plot to clearly understand the behaviour of given data.
    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # importing libraries
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
      
    ts = pd.Series(np.random.randn(1000), index = pd.date_range(
                                    '1/1/2000', periods = 1000))
      
    df = pd.DataFrame(np.random.randn(1000, 4), index = ts.index,
                                          columns = list('ABCD'))
      
    df3 = pd.DataFrame(np.random.randn(1000, 2),
                   columns =['B', 'C']).cumsum()
      
    df3['A'] = pd.Series(list(range(len(df))))
    df3.iloc[5].plot.bar()
    plt.axhline(0, color ='k')
      
    plt.show()

    chevron_right

    
    

    Output:

  5. Histograms:
    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # importing libraries
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
      
    df4 = pd.DataFrame({'a': np.random.randn(1000) + 1
                        'b': np.random.randn(1000), 
                        'c': np.random.randn(1000) - 1},
                               columns =['a', 'b', 'c'])
    plt.figure()
      
    df4.plot.hist(alpha = 0.5)
    plt.show()

    chevron_right

    
    

    Output:

  6. Box plot using Series and matplotlib: Use box to plot the data of dataframe.
    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # importing libraries
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
      
    df = pd.DataFrame(np.random.rand(10, 5), 
          columns =['A', 'B', 'C', 'D', 'E'])
      
    df.plot.box()
    plt.show()

    chevron_right

    
    

    Output:

  7. Density plot:
    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # importing libraries
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
      
    df = pd.DataFrame(np.random.rand(10, 5), 
          columns =['A', 'B', 'C', 'D', 'E'])
      
    ser = pd.Series(np.random.randn(1000))
    ser.plot.kde()
      
    plt.show()

    chevron_right

    
    

    Output:

  8. Area plot using matplotlib:
    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # importing libraries
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
      
    df = pd.DataFrame(np.random.rand(10, 5), 
           columns =['A', 'B', 'C', 'D', 'E'])
      
    df.plot.area()
    plt.show()

    chevron_right

    
    

    Output:

  9. Scatter plot:
    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # importing libraries
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
      
    df = pd.DataFrame(np.random.rand(500, 4),
               columns =['a', 'b', 'c', 'd'])
      
    df.plot.scatter(x ='a', y ='b')
    plt.show()

    chevron_right

    
    

    Output:

  10. Hexagonal Bin Plot:
    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # importing libraries
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
      
    df = pd.DataFrame(np.random.randn(1000, 2), columns =['a', 'b'])
      
    df['a'] = df['a'] + np.arange(1000)
    df.plot.hexbin(x ='a', y ='b', gridsize = 25)
    plt.show()

    chevron_right

    
    

    Output:

  11. Pie plot:
    filter_none

    edit
    close

    play_arrow

    link
    brightness_4
    code

    # importing libraries
    import matplotlib.pyplot as plt
    import pandas as pd
    import numpy as np
      
    series = pd.Series(3 * np.random.rand(4),
      index =['a', 'b', 'c', 'd'], name ='series')
      
    series.plot.pie(figsize =(4, 4))
    plt.show()

    chevron_right

    
    

    Output:

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.




My Personal Notes arrow_drop_up
Recommended Articles
Page :