Skip to content
Related Articles

Related Articles

Improve Article

Difference between sum of even and odd valued nodes in a Binary Tree

  • Last Updated : 13 Aug, 2021
Geek Week

Given a binary tree, the task is to find the absolute difference between the even valued and the odd valued nodes in a binary tree.

Examples: 

Input:
      5
    /   \
   2     6
 /  \     \  
1    4     8
    /     / \ 
   3     7   9
Output: 5
Explanation:
Sum of the odd value nodes is:
5 + 1 + 3 + 7 + 9 = 25 
Sum of the even value nodes is:
2 + 6 + 4 + 8 = 20 
Absolute difference = (25 – 20) = 5.

Input:
      4
    /   \
   1     4
 /  \     \  
7    2     6
Output: 8

Approach: 
Follow the steps below to solve the problem:

  • Traverse each node in the tree and check if the value at that node is odd or even.
  • Update oddSum and evenSum accordingly after visiting each node.
  • After complete traversal of the tree, print the absolute difference between oddSum and evenSum.

Below is the implementation of the above approach:

C++




// C++ implementation of
// the above approach
#include <bits/stdc++.h>
using namespace std;
 
int oddsum = 0;
int evensum = 0;
int ans = 0;
 
struct node {
    int data;
    struct node* left;
    struct node* right;
};
 
struct node* newnode(int data)
{
    node* temp = new node();
    temp->data = data;
    temp->left = temp->right = NULL;
    return temp;
}
 
// Function calculate the sum of
// odd and even value node
void OddEvenDifference(struct node*
                           root)
{
    // If root is NULL
    if (root == NULL) {
        return;
    }
    else {
        // Check if current root
        // is odd or even
        if (root->data % 2 == 0) {
            evensum += root->data;
        }
        else {
            oddsum += root->data;
        }
        // Call on the left subtree
        OddEvenDifference(root->left);
 
        // Call on the right subtree
        OddEvenDifference(root->right);
    }
}
 
// Driver Code
int main()
{
    node* root = newnode(5);
    root->left = newnode(2);
    root->right = newnode(6);
    root->left->left = newnode(1);
    root->left->right = newnode(4);
    root->left->right->left
        = newnode(3);
    root->right->right = newnode(8);
    root->right->right->right
        = newnode(9);
    root->right->right->left
        = newnode(7);
 
    OddEvenDifference(root);
 
    cout << abs(oddsum - evensum)
         << endl;
}

Java




// Java implementation of
// the above approach
class GFG{
 
static int oddsum = 0;
static int evensum = 0;
static int ans = 0;
 
static class node
{
    int data;
    node left;
    node right;
};
 
static node newnode(int data)
{
    node temp = new node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
// Function calculate the sum of
// odd and even value node
static void OddEvenDifference(node root)
{
     
    // If root is null
    if (root == null)
    {
        return;
    }
    else
    {
         
        // Check if current root
        // is odd or even
        if (root.data % 2 == 0)
        {
            evensum += root.data;
        }
        else
        {
            oddsum += root.data;
        }
         
        // Call on the left subtree
        OddEvenDifference(root.left);
 
        // Call on the right subtree
        OddEvenDifference(root.right);
    }
}
 
// Driver Code
public static void main(String[] args)
{
    node root = newnode(5);
    root.left = newnode(2);
    root.right = newnode(6);
    root.left.left = newnode(1);
    root.left.right = newnode(4);
    root.left.right.left = newnode(3);
    root.right.right = newnode(8);
    root.right.right.right = newnode(9);
    root.right.right.left = newnode(7);
 
    OddEvenDifference(root);
 
    System.out.print(Math.abs(
        oddsum - evensum) + "\n");
}
}
 
// This code is contributed by amal kumar choubey

Python3




# Python3 implementation of
# the above approach
oddsum = 0
evensum = 0
 
class Node:
     
    def __init__(self, data):
         
        self.left = None
        self.right = None
        self.data = data
         
def newnode(data):
 
    temp = Node(data)
     
    return temp
 
# Function calculate the sum of
# odd and even value node
def OddEvenDifference(root):
     
    global evensum, oddsum
     
    # If root is NULL
    if (root == None):
        return
     
    else:
         
        # Check if current root
        # is odd or even
        if (root.data % 2 == 0):
            evensum += root.data
        else:
            oddsum += root.data
         
        # Call on the left subtree
        OddEvenDifference(root.left)
  
        # Call on the right subtree
        OddEvenDifference(root.right)
     
# Driver code
if __name__=="__main__":
     
    root = newnode(5)
    root.left = newnode(2)
    root.right = newnode(6)
    root.left.left = newnode(1)
    root.left.right = newnode(4)
    root.left.right.left= newnode(3)
    root.right.right = newnode(8)
    root.right.right.right= newnode(9)
    root.right.right.left= newnode(7)
  
    OddEvenDifference(root)
     
    print(abs(oddsum - evensum))
     
# This code is contributed by rutvik_56

C#




// C# implementation of
// the above approach
using System;
 
class GFG{
 
static int oddsum = 0;
static int evensum = 0;
//static int ans = 0;
 
class node
{
    public int data;
    public node left;
    public node right;
};
 
static node newnode(int data)
{
    node temp = new node();
    temp.data = data;
    temp.left = temp.right = null;
    return temp;
}
 
// Function calculate the sum of
// odd and even value node
static void OddEvenDifference(node root)
{
     
    // If root is null
    if (root == null)
    {
        return;
    }
    else
    {
         
        // Check if current root
        // is odd or even
        if (root.data % 2 == 0)
        {
            evensum += root.data;
        }
        else
        {
            oddsum += root.data;
        }
         
        // Call on the left subtree
        OddEvenDifference(root.left);
 
        // Call on the right subtree
        OddEvenDifference(root.right);
    }
}
 
// Driver Code
public static void Main(String[] args)
{
    node root = newnode(5);
    root.left = newnode(2);
    root.right = newnode(6);
    root.left.left = newnode(1);
    root.left.right = newnode(4);
    root.left.right.left = newnode(3);
    root.right.right = newnode(8);
    root.right.right.right = newnode(9);
    root.right.right.left = newnode(7);
 
    OddEvenDifference(root);
 
    Console.Write(Math.Abs(
        oddsum - evensum) + "\n");
}
}
 
// This code is contributed by amal kumar choubey

Javascript




<script>
    // Javascript implementation of the above approach
     
    let oddsum = 0;
    let evensum = 0;
    let ans = 0;
 
    class node
    {
        constructor(data) {
           this.data = data;
           this.left = this.right = null;
        }
    }
     
    function newnode(data)
    {
        let temp = new node(data);
        return temp;
    }
 
    // Function calculate the sum of
    // odd and even value node
    function OddEvenDifference(root)
    {
 
        // If root is null
        if (root == null)
        {
            return;
        }
        else
        {
 
            // Check if current root
            // is odd or even
            if (root.data % 2 == 0)
            {
                evensum += root.data;
            }
            else
            {
                oddsum += root.data;
            }
 
            // Call on the left subtree
            OddEvenDifference(root.left);
 
            // Call on the right subtree
            OddEvenDifference(root.right);
        }
    }
     
    let root = newnode(5);
    root.left = newnode(2);
    root.right = newnode(6);
    root.left.left = newnode(1);
    root.left.right = newnode(4);
    root.left.right.left = newnode(3);
    root.right.right = newnode(8);
    root.right.right.right = newnode(9);
    root.right.right.left = newnode(7);
  
    OddEvenDifference(root);
  
    document.write(Math.abs(oddsum - evensum) + "</br>");
 
</script>
Output: 



5

 

Time Complexity: O(N) 
Auxiliary Space: O(N)
 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.  To complete your preparation from learning a language to DS Algo and many more,  please refer Complete Interview Preparation Course.

In case you wish to attend live classes with experts, please refer DSA Live Classes for Working Professionals and Competitive Programming Live for Students.




My Personal Notes arrow_drop_up
Recommended Articles
Page :