Given an integer N, our task is the determine if the integer N is Peculiar Number. If it is then print “yes” otherwise output “no”.
The peculiar number is the number which is three times the sum of digits of the number.
Examples:
Input: N = 27
Output: Yes
Explanation:
Digit sum for 27 is 9 and 3 * 9 = 27 which is equal to N. Hence the output is yes.
Input: N = 36
Output: No
Explanation:
Digit sum for 36 is 9 and 3 * 9 = 27 which is not equal to N. Hence the output is no.
Approach:
To solve the problem mentioned above we have to first find the sum of the digits of a number N. Then check if the sum of digits of the number multiplied by 3 is actually the number N itself. If it is then print Yes otherwise the output is no.
Below is the implementation of the above approach:
C++
#include <bits/stdc++.h>
using namespace std;
int sumDig( int n)
{
int s = 0;
while (n != 0) {
s = s + (n % 10);
n = n / 10;
}
return s;
}
bool Pec( int n)
{
int dup = n;
int dig = sumDig(n);
if (dig * 3 == dup)
return true ;
else
return false ;
}
int main()
{
int n = 36;
if (Pec(n) == true )
cout << "Yes" << endl;
else
cout << "No" << endl;
return 0;
}
|
Java
import java.io.*;
class GFG{
static int sumDig( int n)
{
int s = 0 ;
while (n != 0 )
{
s = s + (n % 10 );
n = n / 10 ;
}
return s;
}
static boolean Pec( int n)
{
int dup = n;
int dig = sumDig(n);
if (dig * 3 == dup)
return true ;
else
return false ;
}
public static void main (String[] args)
{
int n = 36 ;
if (Pec(n) == true )
System.out.println( "Yes" );
else
System.out.println( "No" );
}
}
|
Python3
def sumDig(n):
s = 0
while (n ! = 0 ):
s = s + int (n % 10 )
n = int (n / 10 )
return s
def Pec(n):
dup = n
dig = sumDig(n)
if (dig * 3 = = dup):
return "Yes"
else :
return "No"
n = 36
if Pec(n) = = True :
print ( "Yes" )
else :
print ( "No" )
|
C#
using System;
class GFG{
static int sumDig( int n)
{
int s = 0;
while (n != 0)
{
s = s + (n % 10);
n = n / 10;
}
return s;
}
static bool Pec( int n)
{
int dup = n;
int dig = sumDig(n);
if (dig * 3 == dup)
return true ;
else
return false ;
}
public static void Main()
{
int n = 36;
if (Pec(n) == true )
Console.Write( "Yes" );
else
Console.Write( "No" );
}
}
|
Javascript
<script>
function sumDig(n)
{
var s = 0;
while (n != 0) {
s = s + (n % 10);
n = parseInt(n / 10);
}
return s;
}
function Pec(n)
{
var dup = n;
var dig = sumDig(n);
if (dig * 3 == dup)
return true ;
else
return false ;
}
var n = 36;
if (Pec(n) == true )
document.write( "Yes" );
else
document.write( "No" );
</script>
|
Time Complexity: O(log10n), time used to find the sum of digits of a number
Auxiliary Space: O(1), as no extra space is required
Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!