Open In App
Related Articles

Determinant of a Matrix

Improve
Improve
Improve
Like Article
Like
Save Article
Save
Report issue
Report

The determinant of a Matrix is defined as a special number that is defined only for square matrices (matrices that have the same number of rows and columns). A determinant is used in many places in calculus and other matrices related to algebra, it actually represents the matrix in terms of a real number which can be used in solving a system of a linear equation and finding the inverse of a matrix.

Recommended Practice

Determinant of 2 x 2 Matrix:

Determinant of 2 x 2 matrix


Determinant of 3 x 3 Matrix: 

Determinant of 3 x 3 matrix

How to calculate? 

The value of the determinant of a matrix can be calculated by the following procedure: 

  • For each element of the first row or first column get the cofactor of those elements.
  • Then multiply the element with the determinant of the corresponding cofactor. 
  • Finally, add them with alternate signs. As a base case, the value of the determinant of a 1*1 matrix is the single value itself. 

The cofactor of an element is a matrix that we can get by removing the row and column of that element from that matrix.

Code block


Output
Determinant of the matrix is : 30







Time Complexity: O(n4)
Space Complexity: O(n2), Auxiliary space used for storing cofactors.

Note: In the above recursive approach when the size of the matrix is large it consumes more stack size.

Determinant of a Matrix using Determinant properties:

  • In this method, we are using the properties of Determinant. 
  • Converting the given matrix into an upper triangular matrix using determinant properties 
  • The determinant of the upper triangular matrix is the product of all diagonal elements. 
  • Iterating every diagonal element and making all the elements down the diagonal as zero using determinant properties 
  • If the diagonal element is zero then search for the next non-zero element in the same column.

There exist two cases:

  • Case 1: If there is no non-zero element. In this case, the determinant of a matrix is zero 
  • Case 2: If there exists a non-zero element there exist two cases 
    • Case A: If the index is with a respective diagonal row element. Using the determinant properties make all the column elements down to it zero
    • Case B: Swap the row with respect to the diagonal element column and continue the Case A operation.

Below is the implementation of the above approach:

C++

// C++ program to find Determinant of a matrix
#include <bits/stdc++.h>
using namespace std;
 
// Dimension of input square matrix
#define N 4
// Function to get determinant of matrix
int determinantOfMatrix(int mat[N][N], int n)
{
    int num1, num2, det = 1, index,
                    total = 1; // Initialize result
 
    // temporary array for storing row
    int temp[n + 1];
 
    // loop for traversing the diagonal elements
    for (int i = 0; i < n; i++)
    {
        index = i; // initialize the index
 
        // finding the index which has non zero value
        while (index < n && mat[index][i] == 0)
        {
            index++;
        }
        if (index == n) // if there is non zero element
        {
            // the determinant of matrix as zero
            continue;
        }
        if (index != i)
        {
            // loop for swapping the diagonal element row and
            // index row
            for (int j = 0; j < n; j++)
            {
                swap(mat[index][j], mat[i][j]);
            }
            // determinant sign changes when we shift rows
            // go through determinant properties
            det = det * pow(-1, index - i);
        }
 
        // storing the values of diagonal row elements
        for (int j = 0; j < n; j++)
        {
            temp[j] = mat[i][j];
        }
        // traversing every row below the diagonal element
        for (int j = i + 1; j < n; j++)
        {
            num1 = temp[i]; // value of diagonal element
            num2 = mat[j][i]; // value of next row element
 
            // traversing every column of row
            // and multiplying to every row
            for (int k = 0; k < n; k++)
            {
                // multiplying to make the diagonal
                // element and next row element equal
                mat[j][k]
                    = (num1 * mat[j][k]) - (num2 * temp[k]);
            }
            total = total * num1; // Det(kA)=kDet(A);
        }
    }
 
    // multiplying the diagonal elements to get determinant
    for (int i = 0; i < n; i++)
    {
        det = det * mat[i][i];
    }
    return (det / total); // Det(kA)/k=Det(A);
}
 
// Driver code
int main()
{
    /*int mat[N][N] = {{6, 1, 1},
                        {4, -2, 5},
                        {2, 8, 7}}; */
 
    int mat[N][N] = { { 1, 0, 2, -1 },
                      { 3, 0, 0, 5 },
                      { 2, 1, 4, -3 },
                      { 1, 0, 5, 0 } };
 
    // Function call
    printf("Determinant of the matrix is : %d",
           determinantOfMatrix(mat, N));
    return 0;
}

                    

Java

// Java program to find Determinant of a matrix
class GFG
{
 
    // Dimension of input square matrix
    static final int N = 4;
 
    // Function to get determinant of matrix
    static int determinantOfMatrix(int mat[][], int n)
    {
        int num1, num2, det = 1, index,
                        total = 1; // Initialize result
 
        // temporary array for storing row
        int[] temp = new int[n + 1];
 
        // loop for traversing the diagonal elements
        for (int i = 0; i < n; i++)
        {
            index = i; // initialize the index
 
            // finding the index which has non zero value
            while (index < n && mat[index][i] == 0)
            {
                index++;
            }
            if (index == n) // if there is non zero element
            {
                // the determinant of matrix as zero
                continue;
            }
            if (index != i)
            {
                // loop for swapping the diagonal element row
                // and index row
                for (int j = 0; j < n; j++)
                {
                    swap(mat, index, j, i, j);
                }
                // determinant sign changes when we shift
                // rows go through determinant properties
                det = (int)(det * Math.pow(-1, index - i));
            }
 
            // storing the values of diagonal row elements
            for (int j = 0; j < n; j++)
            {
                temp[j] = mat[i][j];
            }
 
            // traversing every row below the diagonal
            // element
            for (int j = i + 1; j < n; j++)
            {
                num1 = temp[i]; // value of diagonal element
                num2 = mat[j]
                          [i]; // value of next row element
 
                // traversing every column of row
                // and multiplying to every row
                for (int k = 0; k < n; k++)
                {
                    // multiplying to make the diagonal
                    // element and next row element equal
                    mat[j][k] = (num1 * mat[j][k])
                                - (num2 * temp[k]);
                }
                total = total * num1; // Det(kA)=kDet(A);
            }
        }
 
        // multiplying the diagonal elements to get
        // determinant
        for (int i = 0; i < n; i++)
        {
            det = det * mat[i][i];
        }
        return (det / total); // Det(kA)/k=Det(A);
    }
 
    static int[][] swap(int[][] arr, int i1, int j1, int i2,
                        int j2)
    {
        int temp = arr[i1][j1];
        arr[i1][j1] = arr[i2][j2];
        arr[i2][j2] = temp;
        return arr;
    }
 
    // Driver code
    public static void main(String[] args)
    {
        /*int mat[N][N] = {{6, 1, 1},
                        {4, -2, 5},
                        {2, 8, 7}}; */
 
        int mat[][] = { { 1, 0, 2, -1 },
                        { 3, 0, 0, 5 },
                        { 2, 1, 4, -3 },
                        { 1, 0, 5, 0 } };
 
        // Function call
        System.out.printf(
            "Determinant of the matrix is : %d",
            determinantOfMatrix(mat, N));
    }
}
 
// This code is contributed by Rajput-Ji

                    

Python3

# Python program to find Determinant of a matrix
 
 
def determinantOfMatrix(mat, n):
 
    temp = [0]*# temporary array for storing row
    total = 1
    det = 1  # initialize result
 
    # loop for traversing the diagonal elements
    for i in range(0, n):
        index = # initialize the index
 
        # finding the index which has non zero value
        while(index < n and mat[index][i] == 0):
            index += 1
 
        if(index == n):  # if there is non zero element
            # the determinant of matrix as zero
            continue
 
        if(index != i):
            # loop for swapping the diagonal element row and index row
            for j in range(0, n):
                mat[index][j], mat[i][j] = mat[i][j], mat[index][j]
 
            # determinant sign changes when we shift rows
            # go through determinant properties
            det = det*int(pow(-1, index-i))
 
        # storing the values of diagonal row elements
        for j in range(0, n):
            temp[j] = mat[i][j]
 
        # traversing every row below the diagonal element
        for j in range(i+1, n):
            num1 = temp[i]     # value of diagonal element
            num2 = mat[j][i]   # value of next row element
 
            # traversing every column of row
            # and multiplying to every row
            for k in range(0, n):
                # multiplying to make the diagonal
                # element and next row element equal
 
                mat[j][k] = (num1*mat[j][k]) - (num2*temp[k])
 
            total = total * num1  # Det(kA)=kDet(A);
 
    # multiplying the diagonal elements to get determinant
    for i in range(0, n):
        det = det*mat[i][i]
 
    return int(det/total)  # Det(kA)/k=Det(A);
 
 
# Drivers code
if __name__ == "__main__":
    # mat=[[6 1 1][4 -2 5][2 8 7]]
 
    mat = [[1, 0, 2, -1], [3, 0, 0, 5], [2, 1, 4, -3], [1, 0, 5, 0]]
    N = len(mat)
     
    # Function call
    print("Determinant of the matrix is : ", determinantOfMatrix(mat, N))

                    

C#

// C# program to find Determinant of a matrix
using System;
 
class GFG {
 
    // Dimension of input square matrix
    static readonly int N = 4;
 
    // Function to get determinant of matrix
    static int determinantOfMatrix(int[, ] mat, int n)
    {
        int num1, num2, det = 1, index,
                        total = 1; // Initialize result
 
        // temporary array for storing row
        int[] temp = new int[n + 1];
 
        // loop for traversing the diagonal elements
        for (int i = 0; i < n; i++)
        {
            index = i; // initialize the index
 
            // finding the index which has non zero value
            while(index < n && mat[index, i] == 0)
            {
                index++;
            }
            if (index == n) // if there is non zero element
            {
                // the determinant of matrix as zero
                continue;
            }
            if (index != i)
            {
                // loop for swapping the diagonal element row
                // and index row
                for (int j = 0; j < n; j++)
                {
                    swap(mat, index, j, i, j);
                }
                // determinant sign changes when we shift
                // rows go through determinant properties
                det = (int)(det * Math.Pow(-1, index - i));
            }
 
            // storing the values of diagonal row elements
            for (int j = 0; j < n; j++)
            {
                temp[j] = mat[i, j];
            }
 
            // traversing every row below the diagonal
            // element
            for (int j = i + 1; j < n; j++)
            {
                num1 = temp[i]; // value of diagonal element
                num2 = mat[j,
                           i]; // value of next row element
 
                // traversing every column of row
                // and multiplying to every row
                for (int k = 0; k < n; k++)
                {
 
                    // multiplying to make the diagonal
                    // element and next row element equal
                    mat[j, k] = (num1 * mat[j, k])
                                - (num2 * temp[k]);
                }
                total = total * num1; // Det(kA)=kDet(A);
            }
        }
 
        // multiplying the diagonal elements to get
        // determinant
        for (int i = 0; i < n; i++)
        {
            det = det * mat[i, i];
        }
        return (det / total); // Det(kA)/k=Det(A);
    }
 
    static int[, ] swap(int[, ] arr, int i1, int j1, int i2,
                        int j2)
    {
        int temp = arr[i1, j1];
        arr[i1, j1] = arr[i2, j2];
        arr[i2, j2] = temp;
        return arr;
    }
 
    // Driver code
    public static void Main(String[] args)
    {
        /*int mat[N,N] = {{6, 1, 1},
                        {4, -2, 5},
                        {2, 8, 7}}; */
 
        int[, ] mat = { { 1, 0, 2, -1 },
                        { 3, 0, 0, 5 },
                        { 2, 1, 4, -3 },
                        { 1, 0, 5, 0 } };
 
        // Function call
        Console.Write("Determinant of the matrix is : {0}",
                      determinantOfMatrix(mat, N));
    }
}
 
// This code is contributed by 29AjayKumar

                    

Javascript

Javascript<script>
// javascript program to find Determinant of a matrix
 
 
    // Dimension of input square matrix
      var N = 4;
 
    // Function to get determinant of matrix
    function determinantOfMatrix(mat , n)
    {
        var num1, num2, det = 1, index,
                        total = 1; // Initialize result
 
        // temporary array for storing row
        var temp = Array(n + 1).fill(0);
 
        // loop for traversing the diagonal elements
        for (i = 0; i < n; i++)
        {
            index = i; // initialize the index
 
            // finding the index which has non zero value
            while (index < n && mat[index][i] == 0)
            {
                index++;
            }
            if (index == n) // if there is non zero element
            {
                // the determinant of matrix as zero
                continue;
            }
            if (index != i)
            {
                // loop for swapping the diagonal element row
                // and index row
                for (j = 0; j < n; j++)
                {
                    swap(mat, index, j, i, j);
                }
                // determinant sign changes when we shift
                // rows go through determinant properties
                det = parseInt((det * Math.pow(-1, index - i)));
            }
 
            // storing the values of diagonal row elements
            for (j = 0; j < n; j++)
            {
                temp[j] = mat[i][j];
            }
 
            // traversing every row below the diagonal
            // element
            for (j = i + 1; j < n; j++)
            {
                num1 = temp[i]; // value of diagonal element
                num2 = mat[j]
                          [i]; // value of next row element
 
                // traversing every column of row
                // and multiplying to every row
                for (k = 0; k < n; k++)
                {
                    // multiplying to make the diagonal
                    // element and next row element equal
                    mat[j][k] = (num1 * mat[j][k])
                                - (num2 * temp[k]);
                }
                total = total * num1; // Det(kA)=kDet(A);
            }
        }
 
        // multiplying the diagonal elements to get
        // determinant
        for (i = 0; i < n; i++)
        {
            det = det * mat[i][i];
        }
        return (det / total); // Det(kA)/k=Det(A);
    }
 
     function swap(arr , i1 , j1 , i2,
                         j2)
    {
        var temp = arr[i1][j1];
        arr[i1][j1] = arr[i2][j2];
        arr[i2][j2] = temp;
        return arr;
    }
 
    // Driver code
     
 
        /*var mat[N][N] = [{6, 1, 1],
                        {4, -2, 5],
                        {2, 8, 7}]; */
 
        var mat = [ [ 1, 0, 2, -1 ],
                        [ 3, 0, 0, 5 ],
                        [ 2, 1, 4, -3 ],
                        [ 1, 0, 5, 0 ] ];
 
        // Function call
        document.write(
            "Determinant of the matrix is : ",
            determinantOfMatrix(mat, N));
 
// This code contributed by gauravrajput1
</script>

                    

Output
Determinant of the matrix is : 30







Time complexity: O(n3
Auxiliary Space: O(n), Space used for storing row.
 

Determinant of a Matrix

There is a built-in function or method in linalg module of NumPy package in python. It can be called numpy.linalg.det(mat) which returns the determinant value of the matrix mat passed in the argument.

C++

#include <iostream>
 
// Function to calculate the determinant of a 2x2 matrix
double determinant2x2(double a, double b, double c, double d) {
    return a * d - b * c;
}
 
// Function to calculate the determinant of a 3x3 matrix
double determinant3x3(double mat[3][3]) {
    double det = 0;
    for (int i = 0; i < 3; i++) {
        det += mat[0][i] * determinant2x2(mat[1][(i + 1) % 3], mat[1][(i + 2) % 3], mat[2][(i + 1) % 3], mat[2][(i + 2) % 3]);
    }
    return det;
}
 
// Function to calculate the determinant of a 4x4 matrix
double determinant4x4(double mat[4][4]) {
    double det = 0;
    for (int i = 0; i < 4; i++) {
        double minorMatrix[3][3];
        for (int j = 1; j < 4; j++) {
            int col = 0;
            for (int k = 0; k < 4; k++) {
                if (k != i) {
                    minorMatrix[j - 1][col] = mat[j][k];
                    col++;
                }
            }
        }
        double minorDet = determinant3x3(minorMatrix);
        det += (i % 2 == 0 ? 1 : -1) * mat[0][i] * minorDet;
    }
    return det;
}
 
int main() {
    double mat[4][4] = {
        {1, 0, 2, -1},
        {3, 0, 0, 5},
        {2, 1, 4, -3},
        {1, 0, 5, 0}
    };
 
    double det = determinant4x4(mat);
 
    std::cout << "Determinant of the matrix is: " << det << std::endl;
 
    return 0;
}

                    

Java

public class MatrixDeterminant {
 
    // Function to calculate the determinant of a 2x2 matrix
    public static double determinant2x2(double a, double b, double c, double d) {
        return a * d - b * c;
    }
 
    // Function to calculate the determinant of a 3x3 matrix
    public static double determinant3x3(double[][] mat) {
        double det = 0;
        for (int i = 0; i < 3; i++) {
            det += mat[0][i] * determinant2x2(mat[1][(i + 1) % 3], mat[1][(i + 2) % 3], mat[2][(i + 1) % 3], mat[2][(i + 2) % 3]);
        }
        return det;
    }
 
    // Function to calculate the determinant of a 4x4 matrix
    public static double determinant4x4(double[][] mat) {
        double det = 0;
        for (int i = 0; i < 4; i++) {
            double[][] minorMatrix = new double[3][3];
            for (int j = 1; j < 4; j++) {
                int col = 0;
                for (int k = 0; k < 4; k++) {
                    if (k != i) {
                        minorMatrix[j - 1][col] = mat[j][k];
                        col++;
                    }
                }
            }
            double minorDet = determinant3x3(minorMatrix);
            det += (i % 2 == 0 ? 1 : -1) * mat[0][i] * minorDet;
        }
        return det;
    }
 
    public static void main(String[] args) {
        double[][] mat = {
            {1, 0, 2, -1},
            {3, 0, 0, 5},
            {2, 1, 4, -3},
            {1, 0, 5, 0}
        };
 
        double det = determinant4x4(mat);
 
        System.out.println("Determinant of the matrix is: " + det);
    }
}
 
//This code is contributed by shivamgupta0987654321

                    

Python3

# importing the numpy package
# as np
import numpy as np
 
def determinant(mat):
     
    # calling the det() method
    det = np.linalg.det(mat)
    return round(det)
 
# Driver Code
# declaring the matrix
mat = [[1, 0, 2, -1],
       [3, 0, 0, 5],
       [2, 1, 4, -3],
       [1, 0, 5, 0]]
 
# Function call
print('Determinant of the matrix is:',
      determinant(mat))

                    

C#

using System;
 
class Program
{
    // Function to calculate the determinant of a 2x2 matrix
    static double Determinant2x2(double a, double b, double c, double d)
    {
        return a * d - b * c;
    }
 
    // Function to calculate the determinant of a 3x3 matrix
    static double Determinant3x3(double[,] mat)
    {
        double det = 0;
        for (int i = 0; i < 3; i++)
        {
            det += mat[0, i] * Determinant2x2(mat[1, (i + 1) % 3], mat[1, (i + 2) % 3], mat[2, (i + 1) % 3], mat[2, (i + 2) % 3]);
        }
        return det;
    }
 
    // Function to calculate the determinant of a 4x4 matrix
    static double Determinant4x4(double[,] mat)
    {
        double det = 0;
        for (int i = 0; i < 4; i++)
        {
            double[,] minorMatrix = new double[3, 3];
            for (int j = 1; j < 4; j++)
            {
                int col = 0;
                for (int k = 0; k < 4; k++)
                {
                    if (k != i)
                    {
                        minorMatrix[j - 1, col] = mat[j, k];
                        col++;
                    }
                }
            }
            double minorDet = Determinant3x3(minorMatrix);
            det += (i % 2 == 0 ? 1 : -1) * mat[0, i] * minorDet;
        }
        return det;
    }
 
    static void Main()
    {
        double[,] mat = {
            {1, 0, 2, -1},
            {3, 0, 0, 5},
            {2, 1, 4, -3},
            {1, 0, 5, 0}
        };
 
        double det = Determinant4x4(mat);
 
        Console.WriteLine("Determinant of the matrix is: " + det);
    }
}

                    

Javascript

// Function to calculate the determinant of a 2x2 matrix
function determinant2x2(a, b, c, d) {
    return a * d - b * c;
}
 
// Function to calculate the determinant of a 3x3 matrix
function determinant3x3(mat) {
    let det = 0;
    for (let i = 0; i < 3; i++) {
        det += mat[0][i] * determinant2x2(
            mat[1][(i + 1) % 3], mat[1][(i + 2) % 3],
            mat[2][(i + 1) % 3], mat[2][(i + 2) % 3]
        );
    }
    return det;
}
 
// Function to calculate the determinant of a 4x4 matrix
function determinant4x4(mat) {
    let det = 0;
    for (let i = 0; i < 4; i++) {
        let minorMatrix = [
            [0, 0, 0],
            [0, 0, 0],
            [0, 0, 0]
        ];
        for (let j = 1; j < 4; j++) {
            let col = 0;
            for (let k = 0; k < 4; k++) {
                if (k !== i) {
                    minorMatrix[j - 1][col] = mat[j][k];
                    col++;
                }
            }
        }
        let minorDet = determinant3x3(minorMatrix);
        det += (i % 2 === 0 ? 1 : -1) * mat[0][i] * minorDet;
    }
    return det;
}
 
// Example usage
const mat = [
    [1, 0, 2, -1],
    [3, 0, 0, 5],
    [2, 1, 4, -3],
    [1, 0, 5, 0]
];
 
const det = determinant4x4(mat);
 
console.log("Determinant of the matrix is:", det);

                    

Output:

Determinant of the matrix is: 30

Time Complexity: O(n3), as the time complexity of np.linalg.det is O(n3) for an n x n order matrix.
Auxiliary Space: O(1)



Last Updated : 06 Dec, 2023
Like Article
Save Article
Previous
Next
Share your thoughts in the comments
Similar Reads