Skip to content
Related Articles
Get the best out of our app
GeeksforGeeks App
Open App
geeksforgeeks
Browser
Continue

Related Articles

Designing Deterministic Finite Automata (Set 2)

Improve Article
Save Article
Like Article
Improve Article
Save Article
Like Article

Prerequisite – Designing finite automata, previous article: Designing Deterministic Finite Automata (Set 1)
In this article, we will see some designing of Deterministic Finite Automata (DFA).

Problem-1: Construction of a DFA for the set of string over {a, b} such that length of the string |w| is divisible by 2 i.e, |w| mod 2 = 0.

Explanation – The desired language will be like:

L = {?, aa, ab, ba, bb, aaaa, bbbb, ............} 

The state transition diagram of the language will be like:


Here, state A represent set of all string of length even (0, 2, 4, …), and state B represent set of all string of length odd (1, 3, 5, …).

Number of states: n
If |W| mod n = 0 




def stateA(n):
    if(len(n)==0):
        print("Accepted")
    else:  
          
        #on any input call function stateB
        if (n[0]=='0' or n[0]=='1'):
            stateB(n[1:])
          
def stateB(n):
    if(len(n)==0):
        print("Not Accepted")
    else:
          
         #on any input call function stateA
        if (n[0]=='0' or n[0]=='1'):
            stateA(n[1:])        
  
  
  
#take input
n=input()
  
#call stateA
#to check the input
stateA(n)

The above automata will accept all the strings having the length of the string divisible by 2. When the length of the string is 1, then it will go from state A to B. When the length of the string is 2, then it will go from state B to A and so on. State A is the final state i.e, it accept all the string having length divisible by 2.

Problem-2: Construction of a DFA for the set of string over {a, b} such that length of the string |w| is not divisible by 2 i.e, |w| mod 2 = 1.

Explanation – The desired language will be like:

L = {a, b, aaa, aab, aba, abb, aaaaa, bbbb, .......} 

The state transition diagram of the language will be like:


Here, state A represent set of all string of length even (0, 2, 4, …), and state B represent set of all string of length odd (1, 3, 5, …).




def stateA(n):
    if(len(n)==0):
        print("Not Accepted")
    else:  
          
        #on any input call function stateB
        if (n[0]=='0' or n[0]=='1'):
            stateB(n[1:])
          
def stateB(n):
    if(len(n)==0):
        print("Accepted")
    else:
          
         #on any input call function stateA
        if (n[0]=='0' or n[0]=='1'):
            stateA(n[1:])        
  
  
  
#take input
n=input()
  
#call stateA
#to check the input
stateA(n)

The above automata will accept all the strings having the length of the string not divisible by 2. When the length of the string is 1, then it will go from state A to B. When the length of the string is 2, then it will go from state B to A and so on. State B is the final state i.e, it accept all the string having length not divisible by 2.

Problem-3: Construction of a DFA for the set of string over {a, b} such that length of the string |w| is divisible by 3 i.e, |w| mod 3 = 0.

Explanation – The desired language will be like:

L = {?, aaa, aab, aba, abb, aaaaaa, bbbbbb, .......} 

The state transition diagram of the language will be like:


Here, state A represents set for which string’s length divided by 3 then remainder is zero (0), state B represents set for which string’s length divided by 3 then the remainder is one (1), and state C represents set for which string’s length divided by 3 then the remainder is two (2).

Number of states: n
If |W| mod n = 0 




def stateA(n):
    if(len(n)==0):
        print("Accepted")
    else:  
          
        #on any input call function stateB
        if (n[0]=='0' or n[0]=='1'):
            stateB(n[1:])
          
def stateB(n):
    if(len(n)==0):
        print("Not Accepted")
    else:
          
         #on any input call function stateC
        if (n[0]=='0' or n[0]=='1'):
            stateC(n[1:])  
              
def stateC(n):
    if(len(n)==0):
        print("Not Accepted")
    else:
          
         #on any input call function stateA
        if (n[0]=='0' or n[0]=='1'):
            stateA(n[1:])              
  
  
  
#take input
n=input()
  
#call stateA
#to check the input
stateA(n)

The above automata will accept all the strings having the length of the string divisible by 3. When the length of the string is 1, then it will go from state A to B. When the length of the string is 2, then it will go from state B to C and When the length of the string is 3, then it will go from state C to A (final state). State A is the final state i.e, it accepts all the string having the length divisible by 3.

Problem-4: Construction of a DFA for the set of string over {a, b} such that length of the string |w| is not divisible by 3 i.e, |w| mod 3 = 1.

Explanation – The desired language will be like:

L = {a, b, aa, ab, ba, bb, aaaa, bbbb, ........} 

The state transition diagram of the language will be like:


Here, state A represents set for which string’s length divided by 3 then remainder is zero (0), state B represents set for which string’s length divided by 3 then the remainder is one (1), and state C represents set for which string’s length divided by 3 then the remainder is two (2).




def stateA(n):
    if(len(n)==0):
        print("Not Accepted")
    else:  
          
        #on any input call function stateB
        if (n[0]=='0' or n[0]=='1'):
            stateB(n[1:])
          
def stateB(n):
    if(len(n)==0):
        print("Accepted")
    else:
          
         #on any input call function stateC
        if (n[0]=='0' or n[0]=='1'):
            stateC(n[1:])  
              
def stateC(n):
    if(len(n)==0):
        print("Not Accepted")
    else:
          
         #on any input call function stateA
        if (n[0]=='0' or n[0]=='1'):
            stateA(n[1:])              
  
  
  
#take input
n=input()
  
#call stateA
#to check the input
stateA(n)

The above automata will accept all the strings having the length of the string not divisible by 3. When the length of the string is 1, then it will go from state A to B. When the length of the string is 2, then it will go from state B to C and When the length of the string is 3, then it will go from state C to A. State B and C are the final state i.e, it accepts all the string having the length not divisible by 3.


My Personal Notes arrow_drop_up
Last Updated : 28 Jun, 2020
Like Article
Save Article
Similar Reads