Skip to content
Related Articles

Related Articles

Design an IIR Highpass Butterworth Filter using Bilinear Transformation Method in Scipy – Python
  • Last Updated : 13 Jan, 2021

IIR stands for Infinite Impulse Response, It is one of the striking features of many linear-time invariant systems that are distinguished by having an impulse response h(t)/h(n) which does not become zero after some point but instead continues infinitely.

What is IIR Highpass Butterworth ?

It basically behaves just like an ordinary digital Highpass Butterworth Filter with an infinite impulse response.

The specifications are as follows:  

  • Pass band frequency: 2-4 kHz
  • Stop band frequency: 0-500 Hz
  • Pass band ripple: 3dB
  • Stop band attenuation: 20 dB
  • Sampling frequency: 8 kHz
  • We will plot the magnitude, phase, impulse, step response of the filter.

Step-by-step Approach:

Step 1: Importing all the necessary libraries.



Python3




# import required library
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt

Step 2: Defining user-defined functions mfreqz() and impz(). mfreqz is a function for magnitude and phase plot & impz is a function for impulse and step response.

Python3




def mfreqz(b, a, Fs):
    
    # Compute frequency response of the filter 
    # using signal.freqz function
    wz, hz = signal.freqz(b, a)
  
    # Calculate Magnitude from hz in dB
    Mag = 20*np.log10(abs(hz))
  
    # Calculate phase angle in degree from hz
    Phase = np.unwrap(np.arctan2(np.imag(hz), np.real(hz)))*(180/np.pi)
  
    # Calculate frequency in Hz from wz
    Freq = wz*Fs/(2*np.pi)  # START CODE HERE ### (≈ 1 line of code)
  
    # Plot filter magnitude and phase responses using subplot.
    fig = plt.figure(figsize=(10, 6))
  
    # Plot Magnitude response
    sub1 = plt.subplot(2, 1, 1)
    sub1.plot(Freq, Mag, 'r', linewidth=2)
    sub1.axis([1, Fs/2, -100, 5])
    sub1.set_title('Magnitute Response', fontsize=20)
    sub1.set_xlabel('Frequency [Hz]', fontsize=20)
    sub1.set_ylabel('Magnitude [dB]', fontsize=20)
    sub1.grid()
  
    # Plot phase angle
    sub2 = plt.subplot(2, 1, 2)
    sub2.plot(Freq, Phase, 'g', linewidth=2)
    sub2.set_ylabel('Phase (degree)', fontsize=20)
    sub2.set_xlabel(r'Frequency (Hz)', fontsize=20)
    sub2.set_title(r'Phase response', fontsize=20)
    sub2.grid()
  
    plt.subplots_adjust(hspace=0.5)
    fig.tight_layout()
    plt.show()
  
# Define impz(b,a) to calculate impulse response
# and step response of a system input: b= an array
# containing numerator coefficients,a= an array containing 
#denominator coefficients
def impz(b, a):
      
    # Define the impulse sequence of length 60
    impulse = np.repeat(0., 60)
    impulse[0] = 1.
    x = np.arange(0, 60)
  
    # Compute the impulse response
    response = signal.lfilter(b, a, impulse)
  
    # Plot filter impulse and step response:
    fig = plt.figure(figsize=(10, 6))
    plt.subplot(211)
    plt.stem(x, response, 'm', use_line_collection=True)
    plt.ylabel('Amplitude', fontsize=15)
    plt.xlabel(r'n (samples)', fontsize=15)
    plt.title(r'Impulse response', fontsize=15)
  
    plt.subplot(212)
    step = np.cumsum(response)  # Compute step response of the system
    plt.stem(x, step, 'g', use_line_collection=True)
    plt.ylabel('Amplitude', fontsize=15)
    plt.xlabel(r'n (samples)', fontsize=15)
    plt.title(r'Step response', fontsize=15)
    plt.subplots_adjust(hspace=0.5)
  
    fig.tight_layout()
    plt.show()

Step 3:Define variables with the given specifications of the filter.

Python3




# Given specification
Fs = 8000  # Sampling frequency in Hz
fp = 2000  # Pass band frequency in Hz
fs = 500  # Stop Band frequency in Hz
Ap = 3  # Pass band ripple in dB
As = 20  # Stop band attenuation in dB
  
# Compute Sampling parameter
Td = 1/Fs

Step 4:Computing the cut-off frequency

Python3




# Compute cut-off frequency in radian/sec
wp = 2*np.pi*fp  # pass band frequency in radian/sec
ws = 2*np.pi*fs  # stop band frequency in radian/sec

Step 5: Pre-wrapping the cut-off frequency



Python3




# Prewarp the analog frequency
Omega_p = (2/Td)*np.tan(wp*Td/2# Prewarped analog passband frequency
Omega_s = (2/Td)*np.tan(ws*Td/2# Prewarped analog stopband frequency

Step 6: Computing the Butterworth Filter

Python3




# Compute Butterworth filter order and cutoff frequency
N, wc = signal.buttord(Omega_p, Omega_s, Ap, As, analog=True)
  
# Print the values of order and cut-off frequency
print('Order of the filter=', N)
print('Cut-off frequency=', wc)

Output:

Step 7: Design analog Butterworth filter using N and wc by signal.butter() function.

Python3




# Design analog Butterworth filter using N and
# wc by signal.butter function
b, a = signal.butter(N, wc, 'high', analog=True)
  
# Perform bilinear Transformation
z, p = signal.bilinear(b, a, fs=Fs)
  
# Print numerator and denomerator coefficients 
# of the filter
print('Numerator Coefficients:', z)
print('Denominator Coefficients:', p)

Output:

Step 8: Plotting the Magnitude & Phase Response

Python3




# Call mfreqz function to plot the
# magnitude and phase response
mfreqz(z, p, Fs)

Output:

Step 9: Plotting the impulse & step response

Python3




# Call impz function to plot impulse and 
# step response of the filter
impz(z, p)

Output:

Below is the implementation:

Python3




# import required library
import numpy as np
import scipy.signal as signal
import matplotlib.pyplot as plt
  
# User defined functions mfreqz for 
# Magnitude & Phase Response
def mfreqz(b, a, Fs):
      
    # Compute frequency response of the filter
    # using signal.freqz function
    wz, hz = signal.freqz(b, a)
  
    # Calculate Magnitude from hz in dB
    Mag = 20*np.log10(abs(hz))
  
    # Calculate phase angle in degree from hz
    Phase = np.unwrap(np.arctan2(np.imag(hz), np.real(hz)))*(180/np.pi)
  
    # Calculate frequency in Hz from wz
    Freq = wz*Fs/(2*np.pi)  # START CODE HERE ### (≈ 1 line of code)
  
    # Plot filter magnitude and phase responses using subplot.
    fig = plt.figure(figsize=(10, 6))
  
    # Plot Magnitude response
    sub1 = plt.subplot(2, 1, 1)
    sub1.plot(Freq, Mag, 'r', linewidth=2)
    sub1.axis([1, Fs/2, -100, 5])
    sub1.set_title('Magnitute Response', fontsize=20)
    sub1.set_xlabel('Frequency [Hz]', fontsize=20)
    sub1.set_ylabel('Magnitude [dB]', fontsize=20)
    sub1.grid()
  
    # Plot phase angle
    sub2 = plt.subplot(2, 1, 2)
    sub2.plot(Freq, Phase, 'g', linewidth=2)
    sub2.set_ylabel('Phase (degree)', fontsize=20)
    sub2.set_xlabel(r'Frequency (Hz)', fontsize=20)
    sub2.set_title(r'Phase response', fontsize=20)
    sub2.grid()
  
    plt.subplots_adjust(hspace=0.5)
    fig.tight_layout()
    plt.show()
  
# Define impz(b,a) to calculate impulse 
# response and step response of a system
# input: b= an array containing numerator 
# coefficients,a= an array containing 
#denominator coefficients
def impz(b, a):
      
    # Define the impulse sequence of length 60
    impulse = np.repeat(0., 60)
    impulse[0] = 1.
    x = np.arange(0, 60)
  
    # Compute the impulse response
    response = signal.lfilter(b, a, impulse)
  
    # Plot filter impulse and step response:
    fig = plt.figure(figsize=(10, 6))
    plt.subplot(211)
    plt.stem(x, response, 'm', use_line_collection=True)
    plt.ylabel('Amplitude', fontsize=15)
    plt.xlabel(r'n (samples)', fontsize=15)
    plt.title(r'Impulse response', fontsize=15)
  
    plt.subplot(212)
    step = np.cumsum(response)  # Compute step response of the system
    plt.stem(x, step, 'g', use_line_collection=True)
    plt.ylabel('Amplitude', fontsize=15)
    plt.xlabel(r'n (samples)', fontsize=15)
    plt.title(r'Step response', fontsize=15)
    plt.subplots_adjust(hspace=0.5)
  
    fig.tight_layout()
    plt.show()
  
  
# Given specification
Fs = 8000  # Sampling frequency in Hz
fp = 2000  # Pass band frequency in Hz
fs = 500  # Stop Band frequency in Hz
Ap = 3  # Pass band ripple in dB
As = 20  # Stop band attenuation in dB
  
# Compute Sampling parameter
Td = 1/Fs
  
# Compute cut-off frequency in radian/sec
wp = 2*np.pi*fp  # pass band frequency in radian/sec
ws = 2*np.pi*fs  # stop band frequency in radian/sec
  
# Prewarp the analog frequency
Omega_p = (2/Td)*np.tan(wp*Td/2# Prewarped analog passband frequency
Omega_s = (2/Td)*np.tan(ws*Td/2# Prewarped analog stopband frequency
  
# Compute Butterworth filter order and cutoff frequency
N, wc = signal.buttord(Omega_p, Omega_s, Ap, As, analog=True)
  
# Print the values of order and cut-off frequency
print('Order of the filter=', N)
print('Cut-off frequency=', wc)
  
# Design analog Butterworth filter using N and
# wc by signal.butter function
b, a = signal.butter(N, wc, 'high', analog=True)
  
# Perform bilinear Transformation
z, p = signal.bilinear(b, a, fs=Fs)
  
# Print numerator and denomerator coefficients of the filter
print('Numerator Coefficients:', z)
print('Denominator Coefficients:', p)
  
# Call mfreqz function to plot the magnitude
# and phase response
mfreqz(z, p, Fs)
  
# Call impz function to plot impulse and step
# response of the filter
impz(z, p)

Output:


Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :