Given an N-Ary tree, find depth of the tree. An N-Ary tree is a tree in which nodes can have at most N children.
Examples:
Example 1:
Example 2:
N-Ary tree can be traversed just like a normal tree. We just have to consider all childs of a given node and recursively call that function on every node.
C++
// C++ program to find the height of // an N-ary tree #include <bits/stdc++.h> using namespace std; // Structure of a node of an n-ary tree struct Node { char key; vector<Node *> child; }; // Utility function to create a new tree node Node *newNode( int key) { Node *temp = new Node; temp->key = key; return temp; } // Function that will return the depth // of the tree int depthOfTree( struct Node *ptr) { // Base case if (!ptr) return 0; // Check for all children and find // the maximum depth int maxdepth = 0; for (vector<Node*>::iterator it = ptr->child.begin(); it != ptr->child.end(); it++) maxdepth = max(maxdepth, depthOfTree(*it)); return maxdepth + 1 ; } // Driver program int main() { /* Let us create below tree * A * / / \ \ * B F D E * / \ | /|\ * K J G C H I * /\ \ * N M L */ Node *root = newNode( 'A' ); (root->child).push_back(newNode( 'B' )); (root->child).push_back(newNode( 'F' )); (root->child).push_back(newNode( 'D' )); (root->child).push_back(newNode( 'E' )); (root->child[0]->child).push_back(newNode( 'K' )); (root->child[0]->child).push_back(newNode( 'J' )); (root->child[2]->child).push_back(newNode( 'G' )); (root->child[3]->child).push_back(newNode( 'C' )); (root->child[3]->child).push_back(newNode( 'H' )); (root->child[3]->child).push_back(newNode( 'I' )); (root->child[0]->child[0]->child).push_back(newNode( 'N' )); (root->child[0]->child[0]->child).push_back(newNode( 'M' )); (root->child[3]->child[2]->child).push_back(newNode( 'L' )); cout << depthOfTree(root) << endl; return 0; } |
Java
// Java program to find the height of // an N-ary tree import java.util.*; class GFG { // Structure of a node of an n-ary tree static class Node { char key; Vector<Node > child; }; // Utility function to create a new tree node static Node newNode( int key) { Node temp = new Node(); temp.key = ( char ) key; temp.child = new Vector<Node>(); return temp; } // Function that will return the depth // of the tree static int depthOfTree(Node ptr) { // Base case if (ptr == null ) return 0 ; // Check for all children and find // the maximum depth int maxdepth = 0 ; for (Node it : ptr.child) maxdepth = Math.max(maxdepth, depthOfTree(it)); return maxdepth + 1 ; } // Driver Code public static void main(String[] args) { /* Let us create below tree * A * / / \ \ * B F D E * / \ | /|\ * K J G C H I * /\ \ * N M L */ Node root = newNode( 'A' ); (root.child).add(newNode( 'B' )); (root.child).add(newNode( 'F' )); (root.child).add(newNode( 'D' )); (root.child).add(newNode( 'E' )); (root.child.get( 0 ).child).add(newNode( 'K' )); (root.child.get( 0 ).child).add(newNode( 'J' )); (root.child.get( 2 ).child).add(newNode( 'G' )); (root.child.get( 3 ).child).add(newNode( 'C' )); (root.child.get( 3 ).child).add(newNode( 'H' )); (root.child.get( 3 ).child).add(newNode( 'I' )); (root.child.get( 0 ).child.get( 0 ).child).add(newNode( 'N' )); (root.child.get( 0 ).child.get( 0 ).child).add(newNode( 'M' )); (root.child.get( 3 ).child.get( 2 ).child).add(newNode( 'L' )); System.out.print(depthOfTree(root) + "\n" ); } } // This code is contributed by Rajput-Ji |
C#
// C# program to find the height of // an N-ary tree using System; using System.Collections.Generic; class GFG { // Structure of a node of an n-ary tree public class Node { public char key; public List<Node > child; }; // Utility function to create a new tree node static Node newNode( int key) { Node temp = new Node(); temp.key = ( char ) key; temp.child = new List<Node>(); return temp; } // Function that will return the depth // of the tree static int depthOfTree(Node ptr) { // Base case if (ptr == null ) return 0; // Check for all children and find // the maximum depth int maxdepth = 0; foreach (Node it in ptr.child) maxdepth = Math.Max(maxdepth, depthOfTree(it)); return maxdepth + 1 ; } // Driver Code public static void Main(String[] args) { /* Let us create below tree * A * / / \ \ * B F D E * / \ | /|\ * K J G C H I * /\ \ * N M L */ Node root = newNode( 'A' ); (root.child).Add(newNode( 'B' )); (root.child).Add(newNode( 'F' )); (root.child).Add(newNode( 'D' )); (root.child).Add(newNode( 'E' )); (root.child[0].child).Add(newNode( 'K' )); (root.child[0].child).Add(newNode( 'J' )); (root.child[2].child).Add(newNode( 'G' )); (root.child[3].child).Add(newNode( 'C' )); (root.child[3].child).Add(newNode( 'H' )); (root.child[3].child).Add(newNode( 'I' )); (root.child[0].child[0].child).Add(newNode( 'N' )); (root.child[0].child[0].child).Add(newNode( 'M' )); (root.child[3].child[2].child).Add(newNode( 'L' )); Console.Write(depthOfTree(root) + "\n" ); } } // This code is contributed by Rajput-Ji |
Output:
4
This article is contributed by Shubham Gupta. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.