Density of Binary Tree using Level Order Traversal

Given a Binary Tree, find the density of it by doing one traversal of it.

The density of binary tree is defined as:

Density of Binary Tree = Size / Height 

Examples:



Input : 
 Root of following tree
   10
  /   \
 20   30

Output :  1.5
Height of given tree = 2
Size of given tree = 3


Input :
Root of the following tree
     10
    /   
   20   
 /
30
Output : 1
Height of given tree = 3
Size of given tree = 3 

The size and height of the tree can be found in single traversal using level order traversal.

To calculate the height of the binary tree the idea is to use a “NULL” pointer as a separator between two levels. Whenever “NULL” occurs during the traversal, height is incremented.

To calculate the size of the binary tree, increment the counter for every new node encountered during the level order traversal.

Finally, use the above formula to calculate the density of the Binary Tree.

Below is the implementation of the above approach:

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation of the above approach
#include <bits/stdc++.h>
using namespace std;
  
// A binary tree node
struct Node {
    int data;
    Node *left, *right;
};
  
// Helper function to allocates a new node
Node* newNode(int data)
{
    Node* node = new Node;
    node->data = data;
    node->left = node->right = NULL;
    return node;
}
  
// Function to calculate density of Binary Tree
float density(Node* root)
{
    queue<Node*> q;
  
    // push root to queue first
    q.push(root);
      
    // push NULL as a seperator
    q.push(NULL);
    int height = 1, size = 0;
    while (!q.empty()) {
        Node* t = q.front();
        q.pop();
        if (t)
            size++;
        else {
  
            // If after popping NULL queue is
            // empty then get out of loop i.e
            // stop the level order traversal.
            if (q.empty())
                break;
            q.push(NULL);
            height++;
            continue;
        }
  
        // if t has left child
        // then push it to queue
        if (t->left) {
            q.push(t->left);
        }
  
        // if t has right child
        // then push it to queue
        if (t->right) {
            q.push(t->right);
        }
    }
    return (float)size / height;
}
  
// Driver code
int main()
{
    Node* root = newNode(1);
    root->left = newNode(2);
    root->right = newNode(3);
  
    cout << density(root) << endl;
    return 0;
}

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

// Java implementation of the above approach 
import java.util.*;
  
class Solution
{
  
// A binary tree node 
static class Node
    int data; 
    Node left, right; 
}
  
// Helper function to allocates a new node 
static Node newNode(int data) 
    Node node = new Node(); 
    node.data = data; 
    node.left = node.right = null
    return node; 
  
// Function to calculate density of Binary Tree 
static float density(Node root) 
    Queue<Node> q = new LinkedList<Node>(); 
  
    // add root to queue first 
    q.add(root); 
      
    // add null as a seperator 
    q.add(null); 
    int height = 1, size = 0
    while (q.size() > 0)
    
        Node t = q.peek(); 
        q.remove(); 
        if (t != null
            size++; 
        else
        
  
            // If after removeping null queue is 
            // empty then get out of loop i.e 
            // stop the level order traversal. 
            if (q.size() == 0
                break
            q.add(null); 
            height++; 
            continue
        
  
        // if t has left child 
        // then add it to queue 
        if (t.left !=null
        
            q.add(t.left); 
        
  
        // if t has right child 
        // then add it to queue 
        if (t.right != null)
        
            q.add(t.right); 
        
    
    return ((float)size )/ height; 
  
// Driver code 
public static void main(String args[])
    Node root = newNode(1); 
    root.left = newNode(2); 
    root.right = newNode(3); 
  
    System.out.println(density(root)); 
}
  
// This code is contributed by Arnab Kundu

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation of the above approach 
using System; 
using System.Collections.Generic; 
  
class GFG
{
  
// A binary tree node 
public class Node
    public int data; 
    public Node left, right; 
}
  
// Helper function to allocates a new node 
static Node newNode(int data) 
    Node node = new Node(); 
    node.data = data; 
    node.left = node.right = null
    return node; 
  
// Function to calculate density of Binary Tree 
static float density(Node root) 
    Queue<Node> q = new Queue<Node>(); 
  
    // add root to queue first 
    q.Enqueue(root); 
      
    // add null as a seperator 
    q.Enqueue(null); 
    int height = 1, size = 0; 
    while (q.Count > 0)
    
        Node t = q.Peek(); 
        q.Dequeue(); 
        if (t != null
            size++; 
        else
        
  
            // If after removeping null queue is 
            // empty then get out of loop i.e 
            // stop the level order traversal. 
            if (q.Count == 0) 
                break
            q.Enqueue(null); 
            height++; 
            continue
        
  
        // if t has left child 
        // then add it to queue 
        if (t.left !=null
        
            q.Enqueue(t.left); 
        
  
        // if t has right child 
        // then add it to queue 
        if (t.right != null)
        
            q.Enqueue(t.right); 
        
    
    return ((float)size ) / height; 
  
// Driver code 
public static void Main(String []args)
    Node root = newNode(1); 
    root.left = newNode(2); 
    root.right = newNode(3); 
  
    Console.WriteLine(density(root)); 
}
}
  
// This code is contributed by PrinciRaj1992 

chevron_right


Output:

1.5

Time Complexity : O(N)



My Personal Notes arrow_drop_up

Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.



Improved By : andrew1234, princiraj1992



Article Tags :
Practice Tags :


Be the First to upvote.


Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.