Skip to content
Related Articles

Related Articles

Delete Edge to minimize subtree sum difference
  • Difficulty Level : Medium
  • Last Updated : 02 Dec, 2020

Given an undirected tree whose each node is associated with a weight. We need to delete an edge in such a way that difference between sum of weight in one subtree to sum of weight in other subtree is minimized.

Example: 

In above tree, 
We have 6 choices for edge deletion,
edge 0-1,  subtree sum difference = 21 - 2 = 19
edge 0-2,  subtree sum difference = 14 - 9 = 5
edge 0-3,  subtree sum difference = 15 - 8 = 7
edge 2-4,  subtree sum difference = 20 - 3 = 17
edge 2-5,  subtree sum difference = 18 - 5 = 13
edge 3-6,  subtree sum difference = 21 - 2 = 19

We can solve this problem using DFS. One simple solution is to delete each edge one by one and check subtree sum difference. Finally choose the minimum of them. This approach takes quadratic amount of time. An efficient method can solve this problem in linear time by calculating the sum of both subtrees using total sum of the tree. We can get the sum of other tree by subtracting sum of one subtree from the total sum of tree, in this way subtree sum difference can be calculated at each node in O(1) time. First we calculate the weight of complete tree and then while doing the DFS at each node, we calculate its subtree sum, by using these two values we can calculate subtree sum difference. 
In below code, another array subtree is used to store sum of subtree rooted at node i in subtree[i]. DFS is called with current node index and parent index each time to loop over children only at each node. 

Please see below code for better understanding. 



C++




// C++ program to minimize subtree sum
// difference by one edge deletion
#include <bits/stdc++.h>
using namespace std;
 
/* DFS method to traverse through edges,
calculating subtree sum at each node and
updating the difference between subtrees */
void dfs(int u, int parent, int totalSum,
        vector<int> edge[], int subtree[], int& res)
{
    int sum = subtree[u];
 
    /* loop for all neighbors except parent and
        aggregate sum over all subtrees */
    for (int i = 0; i < edge[u].size(); i++)
    {
        int v = edge[u][i];
        if (v != parent)
        {
            dfs(v, u, totalSum, edge, subtree, res);
            sum += subtree[v];
        }
    }
 
    // store sum in current node's subtree index
    subtree[u] = sum;
 
    /* at one side subtree sum is 'sum' and other side
        subtree sum is 'totalSum - sum' so their difference
        will be totalSum - 2*sum, by which we'll update
        res */
    if (u != 0 && abs(totalSum - 2*sum) < res)
        res = abs(totalSum - 2*sum);
}
 
// Method returns minimum subtree sum difference
int getMinSubtreeSumDifference(int vertex[],
                    int edges[][2], int N)
{
    int totalSum = 0;
    int subtree[N];
 
    // Calculating total sum of tree and initializing
    // subtree sum's by vertex values
    for (int i = 0; i < N; i++)
    {
        subtree[i] = vertex[i];
        totalSum += vertex[i];
    }
 
    // filling edge data structure
    vector<int> edge[N];
    for (int i = 0; i < N - 1; i++)
    {
        edge[edges[i][0]].push_back(edges[i][1]);
        edge[edges[i][1]].push_back(edges[i][0]);
    }
 
    int res = INT_MAX;
 
    // calling DFS method at node 0, with parent as -1
    dfs(0, -1, totalSum, edge, subtree, res);
    return res;
}
 
// Driver code to test above methods
int main()
{
    int vertex[] = {4, 2, 1, 6, 3, 5, 2};
    int edges[][2] = {{0, 1}, {0, 2}, {0, 3},
                    {2, 4}, {2, 5}, {3, 6}};
    int N = sizeof(vertex) / sizeof(vertex[0]);
 
    cout << getMinSubtreeSumDifference(vertex, edges, N);
    return 0;
}


Java




// Java program to minimize subtree sum
// difference by one edge deletion
import java.util.ArrayList;
 
class Graph{
 
static int res;
 
// DFS method to traverse through edges,
// calculating subtree sum at each node
// and updating the difference between subtrees
static void dfs(int u, int parent, int totalSum,
                ArrayList<Integer>[] edge, int subtree[])
{
    int sum = subtree[u];
 
    // Loop for all neighbors except parent
    // and aggregate sum over all subtrees
    for(int i = 0; i < edge[u].size(); i++)
    {
        int v = edge[u].get(i);
         
        if (v != parent)
        {
            dfs(v, u, totalSum, edge, subtree);
            sum += subtree[v];
        }
    }
 
    // Store sum in current node's subtree index
    subtree[u] = sum;
 
    // At one side subtree sum is 'sum' and other
    // side subtree sum is 'totalSum - sum' so
    // their difference will be totalSum - 2*sum,
    // by which we'll update res
    if (u != 0 && Math.abs(totalSum - 2 * sum) < res)
        res = Math.abs(totalSum - 2 * sum);
}
 
// Method returns minimum subtree sum difference
static int getMinSubtreeSumDifference(int vertex[],
                                      int[][] edges,
                                      int N)
{
    int totalSum = 0;
    int[] subtree = new int[N];
 
    // Calculating total sum of tree and
    // initializing subtree sum's by
    // vertex values
    for(int i = 0; i < N; i++)
    {
        subtree[i] = vertex[i];
        totalSum += vertex[i];
    }
     
    // Filling edge data structure
    @SuppressWarnings("unchecked")
    ArrayList<Integer>[] edge = new ArrayList[N];
    for(int i = 0; i < N; i++)
    {
        edge[i] = new ArrayList<>();
    }
    for(int i = 0; i < N - 1; i++)
    {
        edge[edges[i][0]].add(edges[i][1]);
        edge[edges[i][1]].add(edges[i][0]);
    }
 
    // int res = Integer.MAX_VALUE;
 
    // Calling DFS method at node 0, with
    // parent as -1
    dfs(0, -1, totalSum, edge, subtree);
    return res;
}
 
// Driver code
public static void main(String[] args)
{
    res = Integer.MAX_VALUE;
 
    int[] vertex = { 4, 2, 1, 6, 3, 5, 2 };
    int[][] edges = { { 0, 1 }, { 0, 2 },
                      { 0, 3 }, { 2, 4 },
                      { 2, 5 }, { 3, 6 } };
    int N = vertex.length;
 
    System.out.println(getMinSubtreeSumDifference(
        vertex, edges, N));
}
}
 
// This code is contributed by sanjeev2552


Python3




# Python3 program to minimize subtree
# Sum difference by one edge deletion
 
# DFS method to traverse through edges,
# calculating subtree Sum at each node and
# updating the difference between subtrees
def dfs(u, parent, totalSum, edge,
                    subtree, res):
    Sum = subtree[u]
 
    # loop for all neighbors except parent
    # and aggregate Sum over all subtrees
    for i in range(len(edge[u])):
        v = edge[u][i]
        if (v != parent):
            dfs(v, u, totalSum, edge,
                        subtree, res)
            Sum += subtree[v]
 
    # store Sum in current node's
    # subtree index
    subtree[u] = Sum
 
    # at one side subtree Sum is 'Sum' and
    # other side subtree Sum is 'totalSum - Sum'
    # so their difference will be totalSum - 2*Sum,
    # by which we'll update res
    if (u != 0 and abs(totalSum - 2 * Sum) < res[0]):
        res[0] = abs(totalSum - 2 * Sum)
 
# Method returns minimum subtree
# Sum difference
def getMinSubtreeSumDifference(vertex, edges, N):
    totalSum = 0
    subtree = [None] * N
 
    # Calculating total Sum of tree
    # and initializing subtree Sum's
    # by vertex values
    for i in range(N):
        subtree[i] = vertex[i]
        totalSum += vertex[i]
 
    # filling edge data structure
    edge = [[] for i in range(N)]
    for i in range(N - 1):
        edge[edges[i][0]].append(edges[i][1])
        edge[edges[i][1]].append(edges[i][0])
 
    res = [999999999999]
 
    # calling DFS method at node 0,
    # with parent as -1
    dfs(0, -1, totalSum, edge, subtree, res)
    return res[0]
 
# Driver Code
if __name__ == '__main__':
 
    vertex = [4, 2, 1, 6, 3, 5, 2]
    edges = [[0, 1], [0, 2], [0, 3],
            [2, 4], [2, 5], [3, 6]]
    N = len(vertex)
 
    print(getMinSubtreeSumDifference(vertex,
                                    edges, N))
 
# This code is contributed by PranchalK


Output: 

5

This article is contributed by Utkarsh Trivedi. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.
Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.
 

 

Attention reader! Don’t stop learning now. Get hold of all the important DSA concepts with the DSA Self Paced Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :