# Degree Centrality (Centrality Measure)

Degree
In graph theory, the degree (or valency) of a vertex of a graph is the number of edges incident to the vertex, with loops counted twice. The degree of a vertex is denoted or . The maximum degree of a graph G, denoted by (G), and the minimum degree of a graph, denoted by (G), are the maximum and minimum degree of its vertices. In the graph on the right, the maximum degree is 5 and the minimum degree is 0. In a regular graph, all degrees are the same, and so we can speak of the degree of the graph.

Degree Centrality
Historically first and conceptually simplest is degree centrality, which is defined as the number of links incident upon a node (i.e., the number of ties that a node has). The degree can be interpreted in terms of the immediate risk of a node for catching whatever is flowing through the network (such as a virus, or some information). In the case of a directed network (where ties have direction), we usually define two separate measures of degree centrality, namely indegree and outdegree. Accordingly, indegree is a count of the number of ties directed to the node and outdegree is the number of ties that the node directs to others. When ties are associated to some positive aspects such as friendship or collaboration, indegree is often interpreted as a form of popularity, and outdegree as gregariousness.

The degree centrality of a vertex , for a given graph with vertices and edges, is defined as Calculating degree centrality for all the nodes in a graph takes in a dense adjacency matrix representation of the graph, and for edges takes in a sparse matrix representation.

The definition of centrality on the node level can be extended to the whole graph, in which case we are speaking of graph centralization. Let be the node with highest degree centrality in . Let be the node connected graph that maximizes the following quantity (with being the node with highest degree centrality in ): Correspondingly, the degree centralization of the graph is as follows: The value of is maximized when the graph contains one central node to which all other nodes are connected (a star graph), and in this case .

Following is the code for the calculation of the degree centrality of the graph and its various nodes.

 import networkx as nx     def degree_centrality(G, nodes):      r"""Compute the degree centrality for nodes in a bipartite network.         The degree centrality for a node v is the fraction of nodes       connected to it.         Parameters      ----------      G : graph         A bipartite network         nodes : list or container        Container with all nodes in one bipartite node set.         Returns      -------      centrality : dictionary         Dictionary keyed by node with bipartite degree centrality as the value.         Notes      -----      The nodes input parameter must contain all nodes in one bipartite node set,      but the dictionary returned contains all nodes from both bipartite node      sets.         For unipartite networks, the degree centrality values are       normalized by dividing by the maximum possible degree (which is       n-1 where n is the number of nodes in G).          In the bipartite case, the maximum possible degree of a node in a      bipartite node set is the number of nodes in the opposite node set      _.  The degree centrality for a node v in the bipartite      sets U with n nodes and V with m nodes is         .. math::             d_{v} = \frac{deg(v)}{m}, \mbox{for} v \in U ,             d_{v} = \frac{deg(v)}{n}, \mbox{for} v \in V ,            where deg(v) is the degree of node v.                        """     top = set(nodes)      bottom = set(G) - top      s = 1.0/len(bottom)      centrality = dict((n,d*s) for n,d in G.degree_iter(top))      s = 1.0/len(top)      centrality.update(dict((n,d*s) for n,d in G.degree_iter(bottom)))      return centrality

The above function is invoked using the networkx library and once the library is installed, you can eventually use it and the following code has to be written in python for the implementation of the Degree centrality of a node.

 import networkx as nx  G=nx.erdos_renyi_graph(100,0.5)  d=nx.degree_centrality(G)  print(d)

The result is as follows:

 {0: 0.5252525252525253, 1: 0.4444444444444445, 2: 0.5454545454545455, 3: 0.36363636363636365,   4: 0.42424242424242425, 5: 0.494949494949495, 6: 0.5454545454545455, 7: 0.494949494949495,   8: 0.5555555555555556, 9: 0.5151515151515152, 10: 0.5454545454545455, 11: 0.5151515151515152,   12: 0.494949494949495, 13: 0.4444444444444445, 14: 0.494949494949495, 15: 0.4141414141414142,   16: 0.43434343434343436, 17: 0.5555555555555556, 18: 0.494949494949495, 19: 0.5151515151515152,   20: 0.42424242424242425, 21: 0.494949494949495, 22: 0.5555555555555556, 23: 0.5151515151515152,   24: 0.4646464646464647, 25: 0.4747474747474748, 26: 0.4747474747474748, 27: 0.494949494949495,   28: 0.5656565656565657, 29: 0.5353535353535354, 30: 0.4747474747474748, 31: 0.494949494949495,   32: 0.43434343434343436, 33: 0.4444444444444445, 34: 0.5151515151515152, 35: 0.48484848484848486,   36: 0.43434343434343436, 37: 0.4040404040404041, 38: 0.5656565656565657, 39: 0.5656565656565657,   40: 0.494949494949495, 41: 0.5252525252525253, 42: 0.4545454545454546, 43: 0.42424242424242425,   44: 0.494949494949495, 45: 0.595959595959596, 46: 0.5454545454545455, 47: 0.5050505050505051,   48: 0.4646464646464647, 49: 0.48484848484848486, 50: 0.5353535353535354, 51: 0.5454545454545455,   52: 0.5252525252525253, 53: 0.5252525252525253, 54: 0.5353535353535354, 55: 0.6464646464646465,   56: 0.4444444444444445, 57: 0.48484848484848486, 58: 0.5353535353535354, 59: 0.494949494949495,   60: 0.4646464646464647, 61: 0.5858585858585859, 62: 0.494949494949495, 63: 0.48484848484848486,   64: 0.4444444444444445, 65: 0.6262626262626263, 66: 0.5151515151515152, 67: 0.4444444444444445,   68: 0.4747474747474748, 69: 0.5454545454545455, 70: 0.48484848484848486, 71: 0.5050505050505051,   72: 0.4646464646464647, 73: 0.4646464646464647, 74: 0.5454545454545455, 75: 0.4444444444444445,   76: 0.42424242424242425, 77: 0.4545454545454546, 78: 0.494949494949495, 79: 0.494949494949495,   80: 0.4444444444444445, 81: 0.48484848484848486, 82: 0.48484848484848486, 83: 0.5151515151515152,   84: 0.494949494949495, 85: 0.5151515151515152, 86: 0.5252525252525253, 87: 0.4545454545454546,   88: 0.5252525252525253, 89: 0.5353535353535354, 90: 0.5252525252525253, 91: 0.4646464646464647,   92: 0.4646464646464647, 93: 0.5555555555555556, 94: 0.5656565656565657, 95: 0.4646464646464647,   96: 0.494949494949495, 97: 0.494949494949495, 98: 0.5050505050505051, 99: 0.5050505050505051}

The above result is a dictionary depicting the value of degree centrality of each node. The above is an extension of my article series on the centrality measures. Keep networking!!!

References

This article is contributed by Jayant Bisht. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up Check out this Author's contributed articles.

If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please Improve this article if you find anything incorrect by clicking on the "Improve Article" button below.

Improved By : ManasChhabra2

Article Tags :
Practice Tags :

Be the First to upvote.

Please write to us at contribute@geeksforgeeks.org to report any issue with the above content.