Skip to content
Related Articles

Related Articles

Definite Integral | Mathematics
  • Last Updated : 20 May, 2019

Definite integrals are the extension after indefinite integrals, definite integrals have limits [a, b]. It gives the area of a curve bounded between given limits.

\int_{a}^{b}F(x)dx, It denotes the area of curve F(x) bounded between a and b, where a is the lower limit and b is the upper limit.

Note: If f is a continuous function defined on the closed interval [a, b] and F be an anti derivative of f. Then \int_{a}^{b}f(x)dx= \left [ F(x) \right ]_{a}^{b}\right = F(b)-F(a)
Here, the function f needs to be well defined and continuous in [a, b].

Example: Find, \int_{1}^{4}x^{2}dx ?

Solution:



Since, \int x^{2}=\frac{x^{3}}{3}  \newline \newline \textup{Then F(x)} =\frac{x^{3}}{3} \newline \newline [F(x)]_{1}^{4}= F(4)-F(1) \newline \newline =[\frac{4^{3}}{3} - \frac{1^{3}}{3}]=\frac{65}{3}
 

    Properties of definite integrals –

  1.  \int_{a}^{b}f(x)dx=\int_{a}^{b}f(t)dt

  2. \int_{a}^{b}f(x)dx=-\int_{b}^{a}f(x)dx

  3. \int_{a}^{b}f(x)dx=\int_{a}^{c}f(x)dx+\int_{c}^{b}f(x)dx

  4. \int_{a}^{b}f(x)=\int_{a}^{b}f(a+b-x)dx

  5. \int_{0}^{b}f(x)=\int_{0}^{b}f(b-x)dx

  6. \int_{0}^{2a}f(x)dx=\int_{0}^{a}f(x)dx+\int_{0}^{a}f(2a-x)dx

  7. \int_{-a}^{a}f(x)dx=2\int_{0}^{a}f(x)dx, \textup{if f(x) is even function i.e f(x)=f(-x)}

  8. \int_{-a}^{a}f(x)dx=0, \textup{if f(x) is odd function}

These properties can be used directly to find the value of particular definite integral and also interchange to other forms if required.

Attention reader! Don’t stop learning now. Get hold of all the important CS Theory concepts for SDE interviews with the CS Theory Course at a student-friendly price and become industry ready.

My Personal Notes arrow_drop_up
Recommended Articles
Page :