Deepest right leaf node in a binary tree | Iterative approach
Given a Binary Tree, find the deepest leaf node that is the right child of its parent. For example, consider the following tree. The deepest right leaf node is the node with the value 10.
Examples:
Input : 1 / \ 2 3 \ / \ 4 5 6 \ \ 7 8 / \ 9 10 Output : 10
The idea is similar to Method 2 of level order traversal
Traverse the tree level by level and while pushing right child to queue, check if it is leaf node, if it’s leaf node, then update the result and since we are traversing the level by level, the last stored right leaf will be the deepest right leaf node.
Algorithm:
- Start with the root node of the binary tree.
- Create a queue for level order traversal.
- Push the root node into the queue.
- Initialize a variable named result to NULL.
- Traverse the tree level by level using the queue until the queue is empty.
- For each node, first check if it has a left child. If yes, then push it into the queue.
- Then check if it has a right child. If yes, then push it into the queue.
- If the node has a right child and it is a leaf node (i.e., both its left and right child are NULL), then update the result variable with this node.
- Once the traversal is complete, result will hold the deepest right leaf node of the binary tree.
- Return result.
Implementation:
C++
// CPP program to find deepest right leaf // node of binary tree #include <bits/stdc++.h> using namespace std; // tree node struct Node { int data; Node *left, *right; }; // returns a new tree Node Node* newNode( int data) { Node* temp = new Node(); temp->data = data; temp->left = temp->right = NULL; return temp; } // return the deepest right leaf node // of binary tree Node* getDeepestRightLeafNode(Node* root) { if (!root) return NULL; // create a queue for level order traversal queue<Node*> q; q.push(root); Node* result = NULL; // traverse until the queue is empty while (!q.empty()) { Node* temp = q.front(); q.pop(); if (temp->left) { q.push(temp->left); } // Since we go level by level, the last // stored right leaf node is deepest one if (temp->right) { q.push(temp->right); if (!temp->right->left && !temp->right->right) result = temp->right; } } return result; } // driver program int main() { // construct a tree Node* root = newNode(1); root->left = newNode(2); root->right = newNode(3); root->left->right = newNode(4); root->right->left = newNode(5); root->right->right = newNode(6); root->right->left->right = newNode(7); root->right->right->right = newNode(8); root->right->left->right->left = newNode(9); root->right->right->right->right = newNode(10); Node* result = getDeepestRightLeafNode(root); if (result) cout << "Deepest Right Leaf Node :: " << result->data << endl; else cout << "No result, right leaf not found\n" ; return 0; } |
Java
// Java program to find deepest right leaf // node of binary tree import java.util.*; class GFG { // tree node static class Node { int data; Node left, right; }; // returns a new tree Node static Node newNode( int data) { Node temp = new Node(); temp.data = data; temp.left = temp.right = null ; return temp; } // return the deepest right leaf node // of binary tree static Node getDeepestRightLeafNode(Node root) { if (root == null ) return null ; // create a queue for level order traversal Queue<Node> q = new LinkedList<>(); q.add(root); Node result = null ; // traverse until the queue is empty while (!q.isEmpty()) { Node temp = q.peek(); q.poll(); if (temp.left != null ) { q.add(temp.left); } // Since we go level by level, the last // stored right leaf node is deepest one if (temp.right != null ) { q.add(temp.right); if (temp.right.left == null && temp.right.right == null ) result = temp.right; } } return result; } // Driver code public static void main(String[] args) { // construct a tree Node root = newNode( 1 ); root.left = newNode( 2 ); root.right = newNode( 3 ); root.left.right = newNode( 4 ); root.right.left = newNode( 5 ); root.right.right = newNode( 6 ); root.right.left.right = newNode( 7 ); root.right.right.right = newNode( 8 ); root.right.left.right.left = newNode( 9 ); root.right.right.right.right = newNode( 10 ); Node result = getDeepestRightLeafNode(root); if (result != null ) System.out.println( "Deepest Right Leaf Node :: " + result.data); else System.out.println( "No result, right leaf not found\n" ); } } /* This code is contributed by PrinciRaj1992 */ |
Python3
# Python3 program to find closest # value in Binary search Tree _MIN = - 2147483648 _MAX = 2147483648 # Helper function that allocates a new # node with the given data and None # left and right pointers. class newnode: # Constructor to create a new node def __init__( self , data): self .data = data self .left = None self .right = None # utility function to return level # of given node def getDeepestRightLeafNode(root) : if ( not root): return None # create a queue for level # order traversal q = [] q.append(root) result = None # traverse until the queue is empty while ( len (q)): temp = q[ 0 ] q.pop( 0 ) if (temp.left): q.append(temp.left) # Since we go level by level, the last # stored right leaf node is deepest one if (temp.right): q.append(temp.right) if ( not temp.right.left and not temp.right.right): result = temp.right return result # Driver Code if __name__ = = '__main__' : # create a binary tree root = newnode( 1 ) root.left = newnode( 2 ) root.right = newnode( 3 ) root.left.right = newnode( 4 ) root.right.left = newnode( 5 ) root.right.right = newnode( 6 ) root.right.left.right = newnode( 7 ) root.right.right.right = newnode( 8 ) root.right.left.right.left = newnode( 9 ) root.right.right.right.right = newnode( 10 ) result = getDeepestRightLeafNode(root) if result: print ( "Deepest Right Leaf Node ::" , result.data) else : print ( "No result, right leaf not found" ) # This code is contributed by # Shubham Singh(SHUBHAMSINGH10) |
C#
// C# program to find deepest right leaf // node of binary tree using System; using System.Collections.Generic; class GFG { // tree node public class Node { public int data; public Node left, right; }; // returns a new tree Node static Node newNode( int data) { Node temp = new Node(); temp.data = data; temp.left = temp.right = null ; return temp; } // return the deepest right leaf node // of binary tree static Node getDeepestRightLeafNode(Node root) { if (root == null ) return null ; // Create a queue for level order traversal Queue<Node> q = new Queue<Node>(); q.Enqueue(root); Node result = null ; // Traverse until the queue is empty while (q.Count!=0) { Node temp = q.Peek(); q.Dequeue(); if (temp.left != null ) { q.Enqueue(temp.left); } // Since we go level by level, the last // stored right leaf node is deepest one if (temp.right != null ) { q.Enqueue(temp.right); if (temp.right.left == null && temp.right.right == null ) result = temp.right; } } return result; } // Driver code public static void Main(String[] args) { // construct a tree Node root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.right = newNode(4); root.right.left = newNode(5); root.right.right = newNode(6); root.right.left.right = newNode(7); root.right.right.right = newNode(8); root.right.left.right.left = newNode(9); root.right.right.right.right = newNode(10); Node result = getDeepestRightLeafNode(root); if (result != null ) Console.WriteLine( "Deepest Right Leaf Node :: " + result.data); else Console.WriteLine( "No result, right leaf not found\n" ); } } // This code is contributed by Princi Singh |
Javascript
<script> // JavaScript program to find deepest right leaf // node of binary tree /* A binary tree node has data, pointer to left child and a pointer to right child */ class Node { constructor(data) { this .left = null ; this .right = null ; this .data = data; } } // returns a new tree Node function newNode(data) { let temp = new Node(data); return temp; } // return the deepest right leaf node // of binary tree function getDeepestRightLeafNode(root) { if (root == null ) return null ; // create a queue for level order traversal let q = []; q.push(root); let result = null ; // traverse until the queue is empty while (q.length > 0) { let temp = q[0]; q.shift(); if (temp.left != null ) { q.push(temp.left); } // Since we go level by level, the last // stored right leaf node is deepest one if (temp.right != null ) { q.push(temp.right); if (temp.right.left == null && temp.right.right == null ) result = temp.right; } } return result; } // construct a tree let root = newNode(1); root.left = newNode(2); root.right = newNode(3); root.left.right = newNode(4); root.right.left = newNode(5); root.right.right = newNode(6); root.right.left.right = newNode(7); root.right.right.right = newNode(8); root.right.left.right.left = newNode(9); root.right.right.right.right = newNode(10); let result = getDeepestRightLeafNode(root); if (result != null ) document.write( "Deepest Right Leaf Node :: " + result.data); else document.write( "No result, right leaf not found" ); </script> |
Output
Deepest Right Leaf Node :: 10
Time Complexity: O(n)
Auxiliary Space: O(n) because using queue
Please Login to comment...