Skip to content
Related Articles

Related Articles

Improve Article

Decision Tree Classifiers in R Programming

  • Difficulty Level : Medium
  • Last Updated : 22 Jul, 2020

Classification is the task in which objects of several categories are categorized into their respective classes using the properties of classes. A classification model is typically used to,

  • Predict the class label for a new unlabeled data object
  • Provide a descriptive model explaining what features characterize objects in each class

There are various types of classification techniques such as,

Decision Tree Classifiers

A decision tree is a flowchart-like tree structure in which the internal node represents feature(or attribute), the branch represents a decision rule, and each leaf node represents the outcome. A Decision Tree consists of,

  • Nodes: Test for the value of a certain attribute.
  • Edges/Branch: Represents a decision rule and connect to the next node.
  • Leaf nodes: Terminal nodes that represent class labels or class distribution.

decision tree classifiers

And this algorithm can easily be implemented in the R language. Some important point about decision tree classifiers are,



  • It is more interpretable
  • Automatically handles decision-making
  • Bisects the space into smaller spaces
  • Prone to overfitting
  • Can be trained on a small training set
  • Majorly affected by noise

Implementation in R

The Dataset: 

A sample population of 400 people shared their age, gender, and salary with a product company, and if they bought the product or not(0 means no, 1 means yes). Download the dataset Advertisement.csv.

R




# Importing the dataset
dataset = read.csv('Advertisement.csv')
head(dataset, 10)

Output:

 User IDGenderAgeEstimatedSalaryPurchased
015624510Male19190000
115810944Male35200000
215668575Female26430000
315603246Female27570000
415804002Male19760000
515728773Male27580000
615598044Female27840000
715694829Female321500001
815600575Male25330000
915727311Female35650000

R




# Encoding the target feature as factor
dataset$Purchased = factor(dataset$Purchased, 
                           levels = c(0, 1))
  
# Splitting the dataset into 
# the Training set and Test set
# install.packages('caTools')
library(caTools)
set.seed(123)
split = sample.split(dataset$Purchased, 
                     SplitRatio = 0.75)
training_set = subset(dataset, split == TRUE)
test_set = subset(dataset, split == FALSE)
  
# Feature Scaling
training_set[-3] = scale(training_set[-3])
test_set[-3] = scale(test_set[-3])
  
# Fitting Decision Tree Classification 
# to the Training set
# install.packages('rpart')
library(rpart)
classifier = rpart(formula = Purchased ~ .,
                   data = training_set)
  
# Predicting the Test set results
y_pred = predict(classifier, 
                 newdata = test_set[-3], 
                 type = 'class')
  
# Making the Confusion Matrix
cm = table(test_set[, 3], y_pred)
  • The training set contains 300 entries.
  • The test set contains 100 entries.
Confusion Matrix:
[[62,  6],
 [ 3, 29]]

Visualizing the Train Data:

R




# Visualising the Training set results
# Install ElemStatLearn if not present 
# in the packages using(without hashtag)
# install.packages('ElemStatLearn')
library(ElemStatLearn)
set = training_set
  
# Building a grid of Age Column(X1) 
# and Estimated Salary(X2) Column
X1 = seq(min(set[, 1]) - 1, 
         max(set[, 1]) + 1, 
         by = 0.01)
X2 = seq(min(set[, 2]) - 1,
         max(set[, 2]) + 1,
         by = 0.01)
grid_set = expand.grid(X1, X2)
  
# Give name to the columns of matrix
colnames(grid_set) = c('Age',
                       'EstimatedSalary')
  
# Predicting the values and plotting them 
# to grid and labelling the axes
y_grid = predict(classifier, 
                 newdata = grid_set,
                 type = 'class')
plot(set[, -3],
     main = 'Decision Tree 
             Classification (Training set)',
     xlab = 'Age', ylab = 'Estimated Salary',
     xlim = range(X1), ylim = range(X2))
contour(X1, X2, matrix(as.numeric(y_grid),
                       length(X1),
                       length(X2)), 
                       add = TRUE)
points(grid_set, pch = '.'
       col = ifelse(y_grid == 1, 
                    'springgreen3',
                    'tomato'))
points(set, pch = 21, bg = ifelse(set[, 3] == 1, 
                                  'green4'
                                  'red3'))

Output:



output-graph

Visualizing the Test Data:

R




# Visualising the Test set results
library(ElemStatLearn)
set = test_set
  
# Building a grid of Age Column(X1) 
# and Estimated Salary(X2) Column
X1 = seq(min(set[, 1]) - 1, 
         max(set[, 1]) + 1,
         by = 0.01)
X2 = seq(min(set[, 2]) - 1,
         max(set[, 2]) + 1,
         by = 0.01)
grid_set = expand.grid(X1, X2)
  
# Give name to the columns of matrix
colnames(grid_set) = c('Age'
                       'EstimatedSalary')
  
# Predicting the values and plotting them
# to grid and labelling the axes
y_grid = predict(classifier,
                 newdata = grid_set,
                 type = 'class')
plot(set[, -3], main = 'Decision Tree 
                        Classification (Test set)',
     xlab = 'Age', ylab = 'Estimated Salary',
     xlim = range(X1), ylim = range(X2))
contour(X1, X2, matrix(as.numeric(y_grid),
                       length(X1), 
                       length(X2)),
                       add = TRUE)
points(grid_set, pch = '.'
       col = ifelse(y_grid == 1, 
                    'springgreen3',
                    'tomato'))
points(set, pch = 21, bg = ifelse(set[, 3] == 1,
                                  'green4',
                                  'red3'))

Output:

output-graph

Decision Tree Diagram:

R




# Plotting the tree
plot(classifier)
text(classifier)

Output:

Attention reader! Don’t stop learning now. Get hold of all the important Machine Learning Concepts with the Machine Learning Foundation Course at a student-friendly price and become industry ready.




My Personal Notes arrow_drop_up
Recommended Articles
Page :