Decimal representation of given binary string is divisible by 5 or not

The problem is to check whether the decimal representation of the given binary number is divisible by 5 or not. Take care, the number could be very large and may not fit even in long long int. The approach should be such that there are zero or minimum number of multiplication and division operations. No leading 0’s are there in the input.

Examples:

Input : 1010
Output : YES
(1010)2 = (10)10,
and 10 is divisible by 5.

Input : 10000101001
Output : YES

Approach: The following steps are:

  1. Convert the binary number to base 4.
  2. Numbers in base 4 contains only 0, 1, 2, 3 as their digits.
  3. 5 in base 4 is equivalent to 11.
  4. Now apply the rule of divisibility by 11 where you add all the digits at odd places and add all the digits at even places and then subtract one from the other. If the result is divisible by 11(which remember is 5), then the binary number is divisible by 5.

How to covert binary number to base 4 representation?

  1. Check whether the length of binary string is even or odd.
  2. If odd, the add ‘0’ in the beginning of the string.
  3. Now, traverse the string from left to right.
  4. One by extract substrings of size 2 and add their equivalent decimal to the resultant string.

C++

filter_none

edit
close

play_arrow

link
brightness_4
code

// C++ implementation to check whether decimal representation 
// of given binary number is divisible by 5 or not
#include <bits/stdc++.h>
  
using namespace std;
  
// function to return equivalent base 4 number 
// of the given binary number
int equivalentBase4(string bin)
{
    if (bin.compare("00") == 0) 
        return 0;
    if (bin.compare("01") == 0) 
        return 1;
    if (bin.compare("10") == 0) 
        return 2;
    return 3; 
}
  
// function to check whether the given binary
// number is divisible by 5 or not
string isDivisibleBy5(string bin)
{
    int l = bin.size();
      
    if (l % 2 != 0)
    // add '0' in the beginning to make 
    // length an even number
        bin = '0' + bin;
      
    // to store sum of digits at odd and 
    // even places respectively 
    int odd_sum, even_sum = 0;
      
    // variable check for odd place and
    // even place digit
    int isOddDigit = 1;
    for (int i = 0; i<bin.size(); i+= 2)
    {
        // if digit of base 4 is at odd place, then
        // add it to odd_sum
        if (isOddDigit)
            odd_sum += equivalentBase4(bin.substr(i, 2));
        // else digit of base 4 is at even place,
        // add it to even_sum 
        else
            even_sum += equivalentBase4(bin.substr(i, 2));
          
        isOddDigit ^= 1; 
    }
      
    // if this diff is divisible by 11(which is 5 in decimal)
    // then, the binary number is divisible by 5
    if (abs(odd_sum - even_sum) % 5 == 0)
        return "Yes";
      
    // else not divisible by 5
    return "No";
              
}
  
// Driver program to test above
int main()
{
    string bin = "10000101001";
    cout << isDivisibleBy5(bin);
    return 0;

chevron_right


Java

filter_none

edit
close

play_arrow

link
brightness_4
code

//Java implementation to check whether decimal representation 
//of given binary number is divisible by 5 or not
  
class GFG 
{
    // Method to return equivalent base 4 number 
    // of the given binary number
    static int equivalentBase4(String bin)
    {
        if (bin.compareTo("00") == 0
            return 0;
        if (bin.compareTo("01") == 0
            return 1;
        if (bin.compareTo("10") == 0
            return 2;
        return 3
    }
      
    // Method to check whether the given binary
    // number is divisible by 5 or not
    static String isDivisibleBy5(String bin)
    {
        int l = bin.length();
          
        if (l % 2 != 0)
        // add '0' in the beginning to make 
        // length an even number
            bin = '0' + bin;
          
        // to store sum of digits at odd and 
        // even places respectively 
        int odd_sum=0, even_sum = 0;
          
        // variable check for odd place and
        // even place digit
        int isOddDigit = 1;
        for (int i = 0; i<bin.length(); i+= 2)
        {
            // if digit of base 4 is at odd place, then
            // add it to odd_sum
            if (isOddDigit != 0)
                odd_sum += equivalentBase4(bin.substring(i, i+2));
            // else digit of base 4 is at even place,
            // add it to even_sum 
            else
                even_sum += equivalentBase4(bin.substring(i, i+2));
              
            isOddDigit ^= 1
        }
          
        // if this diff is divisible by 11(which is 5 in decimal)
        // then, the binary number is divisible by 5
        if (Math.abs(odd_sum - even_sum) % 5 == 0)
            return "Yes";
          
        // else not divisible by 5
        return "No";
                  
    }
      
    public static void main (String[] args)
    {
        String bin = "10000101001";
        System.out.println(isDivisibleBy5(bin));
    }
}

chevron_right


Python 3

filter_none

edit
close

play_arrow

link
brightness_4
code

# Python3 implementation to check whether 
# decimal representation of given binary 
# number is divisible by 5 or not
  
# function to return equivalent base 4 
# number of the given binary number 
def equivalentBase4(bin):
    if(bin == "00"):
        return 0
    if(bin == "01"):
        return 1
    if(bin == "10"):
        return 2
    if(bin == "11"):
        return 3
      
# function to check whether the given 
# binary number is divisible by 5 or not     
def isDivisibleBy5(bin):
    l = len(bin)
    if((l % 2) == 1):
          
    # add '0' in the beginning to 
    # make length an even number     
        bin = '0' + bin
          
    # to store sum of digits at odd 
    # and even places respectively 
    odd_sum = 0
    even_sum = 0
    isOddDigit = 1
    for i in range(0, len(bin), 2):
          
        # if digit of base 4 is at odd place, 
        # then add it to odd_sum 
        if(isOddDigit):
            odd_sum += equivalentBase4(bin[i:i + 2])
              
        # else digit of base 4 is at
        # even place, add it to even_sum     
        else:
            even_sum += equivalentBase4(bin[i:i + 2])
              
        isOddDigit = isOddDigit ^ 1
  
    # if this diff is divisible by 11(which is 
    # 5 in decimal) then, the binary number is
    # divisible by 5 
    if(abs(odd_sum - even_sum) % 5 == 0):
        return "Yes"
    else:
        return "No"
  
# Driver Code
if __name__=="__main__":
    bin = "10000101001"
    print(isDivisibleBy5(bin))
  
# This code is contributed 
# by Sairahul Jella 

chevron_right


C#

filter_none

edit
close

play_arrow

link
brightness_4
code

// C# implementation to check whether 
// decimal representation of given
// binary number is divisible by 5 or not 
using System;
  
class GFG
{
// Method to return equivalent base
// 4 number of the given binary number 
public static int equivalentBase4(string bin)
{
    if (bin.CompareTo("00") == 0)
    {
        return 0;
    }
    if (bin.CompareTo("01") == 0)
    {
        return 1;
    }
    if (bin.CompareTo("10") == 0)
    {
        return 2;
    }
    return 3;
}
  
// Method to check whether the 
// given binary number is divisible 
// by 5 or not 
public static string isDivisibleBy5(string bin)
{
    int l = bin.Length;
  
    if (l % 2 != 0)
    {
        // add '0' in the beginning to 
        // make length an even number 
        bin = '0' + bin;
    }
  
    // to store sum of digits at odd 
    // and even places respectively 
    int odd_sum = 0, even_sum = 0;
  
    // variable check for odd place 
    // and even place digit 
    int isOddDigit = 1;
    for (int i = 0; i < bin.Length; i += 2)
    {
        // if digit of base 4 is at odd 
        // place, then add it to odd_sum 
        if (isOddDigit != 0)
        {
            odd_sum += equivalentBase4(
                             bin.Substring(i, 2));
        }
          
        // else digit of base 4 is at even  
        // place, add it to even_sum 
        else
        {
            even_sum += equivalentBase4(
                              bin.Substring(i, 2));
        }
  
        isOddDigit ^= 1;
    }
  
    // if this diff is divisible by 
    // 11(which is 5 in decimal) then, 
    // the binary number is divisible by 5 
    if (Math.Abs(odd_sum - even_sum) % 5 == 0)
    {
        return "YES";
    }
  
    // else not divisible by 5 
    return "NO";
  
}
  
// Driver Code
public static void Main(string[] args)
{
    string bin = "10000101001";
    Console.WriteLine(isDivisibleBy5(bin));
}
}
  
// This code is contributed by Shrikant13

chevron_right



Output:

YES

Time Complexity: O(n), where n is the number of digits in the binary number.

References: https://stackoverflow.com/questions/18473730/algorithm-in-hardware-to-find-out-if-number-is-divisible-by-five

This article is contributed by Ayush Jauhari. If you like GeeksforGeeks and would like to contribute, you can also write an article using contribute.geeksforgeeks.org or mail your article to contribute@geeksforgeeks.org. See your article appearing on the GeeksforGeeks main page and help other Geeks.

Please write comments if you find anything incorrect, or you want to share more information about the topic discussed above.



My Personal Notes arrow_drop_up