# De-arrangements for minimum product sum of two arrays

Given two arrays A[] and B[] of same size n. We need to first permute any of arrays such that the sum of product of pairs( 1 element from each) is minimum. That is SUM ( Ai*Bi) for all i is minimum. We also need to count number of de-arrangements present in original array as compared to permuted array.

Examples:

```Input : A[] = {4, 3, 2},
B[] = {7, 12, 5}
Output : 3
Explanation : A[] = {4, 3, 2} and B[] = {5, 7, 12}
results in minimum product sum. B[] = {7, 12, 5}
is 3-position different from new B[].

Input : A[] = {4, 3, 2},
B[] = { 1, 2, 3}
Output : 0
Explanation : A[] = {4, 3, 2} and B[] = {1, 2, 3}
results in minimum product sum. B[] = {1, 2, 3}
is exactly same as new one.```

Idea behind finding the minimum sum of product from two array is to sort both array one in increasing and other in decreasing manner. These type of arrays will always produce minimum sum of pair product. Sorting both array will give the pair value i.e. which element from A is paired to which element from B[]. After that count the de-arrangement from original arrays.

Algorithm :

1. make a copy of both array.
2. sort copy_A[] in increasing, copy_B[] in decreasing order.
3. Iterate for all Ai, find Ai in copy_A[] as copy_A[j] and check whether copy_B[j] == B[i] or not. Increment count if not equal.
4. Return Count Value. That will be our answer.

Implementation:

## CPP

 `// CPP program to count de-arrangements for ` `// minimum product. ` `#include ` `using` `namespace` `std; `   `// function for finding de-arrangement ` `int` `findDearrange (``int` `A[], ``int` `B[], ``int` `n) ` `{ ` ` ``// create copy of array ` ` ``vector <``int``> copy_A (A, A+n); ` ` ``vector <``int``> copy_B (B, B+n); ` ` `  ` ``// sort array in inc & dec way ` ` ``sort(copy_A.begin(), copy_A.end()); ` ` ``sort(copy_B.begin(), copy_B.end(),greater<``int``>()); `   ` ``// count no. of de arrangements ` ` ``int` `count = 0; ` ` ``for` `(``int` `i=0; i::iterator itA; `   `  ``// find position of A[i] in sorted array ` `  ``itA = lower_bound(copy_A.begin(), ` `      ``copy_A.end(), A[i]); `   `  ``// check whether B[i] is same as required or not ` `  ``if` `(B[i] != copy_B[itA-copy_A.begin()]) ` `   ``count++; ` ` ``} `   ` ``// return count ` ` ``return` `count; ` `} `   `// driver function ` `int` `main() ` `{ ` ` ``int` `A[] = {1, 2, 3, 4}; ` ` ``int` `B[] = {6, 3, 4, 5}; ` ` ``int` `n = ``sizeof``(A) /``sizeof``(A);; ` ` ``cout << findDearrange(A,B,n); ` ` ``return` `0; ` `} `

## Java

 `// Java program to count de-arrangements for` `// minimum product.` `import` `java.io.*;` `import` `java.util.*;`   `public` `class` `GFG {`   `  ``// function for finding de-arrangement` `  ``static` `Integer findDearrange (Integer A[], Integer B[], Integer n)` `  ``{` `    `  `    ``// create copy of array` `    ``Integer copy_A[]=A.clone();` `    ``Integer copy_B[]=B.clone();`   `    ``// sort array in inc & dec way` `    ``Arrays.sort(copy_A);` `    ``Arrays.sort(copy_B, Collections.reverseOrder());`   `    ``// count no. of de arrangements` `    ``Integer count = ``0``;` `    ``for` `(Integer i=``0``; i

## Python3

 `import` `copy`   `# function for finding de-arrangement` `def` `findDearrange(A, B, n):` `    `  `    ``# create copy of array` `    ``copy_A ``=` `copy.deepcopy(A)` `    ``copy_B ``=` `copy.deepcopy(B)`   `    ``# sort array in inc & dec way` `    ``copy_A.sort()` `    ``copy_B.sort(reverse``=``True``)`   `    ``# count no. of de arrangements` `    ``count ``=` `0` `    ``for` `i ``in` `range``(n):` `        ``itA ``=` `None`   `        ``# find position of A[i] in sorted array` `        ``itA ``=` `copy_A.index(A[i])`   `        ``# check whether B[i] is same as required or not` `        ``if` `B[i] !``=` `copy_B[itA]:` `            ``count ``+``=` `1`   `    ``# return count` `    ``return` `count`   `# driver function` `A ``=` `[``1``, ``2``, ``3``, ``4``]` `B ``=` `[``6``, ``3``, ``4``, ``5``]` `n ``=` `len``(A)` `print``(findDearrange(A, B, n))`

## C#

 `// C# program to count de-arrangements for` `// minimum product.` `using` `System;`   `class` `GFG` `{` `    ``// function for finding de-arrangement` `    ``static` `int` `FindDearrange(``int``[] A, ``int``[] B, ``int` `n)` `    ``{` `        ``// create copy of array` `        ``int``[] copy_A = (``int``[])A.Clone();` `        ``int``[] copy_B = (``int``[])B.Clone();`   `        ``// sort array in inc & dec way` `        ``Array.Sort(copy_A);` `        ``Array.Sort(copy_B, ``new` `Comparison<``int``>((a, b) => b.CompareTo(a)));`   `        ``// count no. of de arrangements` `        ``int` `count = 0;` `        ``for` `(``int` `i = 0; i < n; i++)` `        ``{` `            ``// find position of A[i] in sorted array` `            ``int` `itA = Array.BinarySearch(copy_A, A[i]);`   `            ``// check whether B[i] is same as required or not` `            ``if` `(B[i] != copy_B[itA])` `                ``count++;` `        ``}`   `        ``// return count` `        ``return` `count;` `    ``}`   `    ``// Driver function` `    ``static` `void` `Main(``string``[] args)` `    ``{` `        ``int``[] A = { 1, 2, 3, 4 };` `        ``int``[] B = { 6, 3, 4, 5 };` `        ``int` `n = A.Length;` `        ``Console.WriteLine(FindDearrange(A, B, n));` `    ``}` `}`   `// This code is contributed by Aman Kumar`

## Javascript

 `// function for finding de-arrangement` `function` `findDearrange(A, B, n) {` `    ``// create copy of array` `    ``const copy_A = [...A];` `    ``const copy_B = [...B];`   `    ``// sort array in inc & dec way` `    ``copy_A.sort((a, b) => a - b);` `    ``copy_B.sort((a, b) => b - a);`   `    ``// count no. of de arrangements` `    ``let count = 0;` `    ``for` `(let i = 0; i < n; i++) {` `        ``let itA = ``null``;`   `        ``// find position of A[i] in sorted array` `        ``itA = copy_A.indexOf(A[i]);`   `        ``// check whether B[i] is same as required or not` `        ``if` `(B[i] !== copy_B[itA]) {` `            ``count += 1;` `        ``}` `    ``}`   `    ``// return count` `    ``return` `count;` `}`   `// driver function` `const A = [1, 2, 3, 4];` `const B = [6, 3, 4, 5];` `const n = A.length;` `console.log(findDearrange(A, B, n));`

Output

`2`

Time Complexity: O(n logn).
Auxiliary Space: O(n)

Feeling lost in the world of random DSA topics, wasting time without progress? It's time for a change! Join our DSA course, where we'll guide you on an exciting journey to master DSA efficiently and on schedule.
Ready to dive in? Explore our Free Demo Content and join our DSA course, trusted by over 100,000 geeks!

Previous
Next