Skip to content
Related Articles

Related Articles

DataFrame.read_pickle() method in Pandas
  • Last Updated : 16 Jul, 2020

Prerequisite : pd.to_pickle method()

The read_pickle() method is used to pickle (serialize) the given object into the file. This method uses the syntax as given below :

Syntax:

pd.read_pickle(path, compression='infer')

Parameters:

Arguments                               Type                                                                             Description
path str File path where the pickled object will be loaded.
compression {‘infer’, ‘gzip’, ‘bz2’, ‘zip’, ‘xz’, None}, default ‘infer’ For on-the-fly decompression of on-disk data. If ‘infer’, then use gzip, bz2, xz or zip if path ends in ‘.gz’, ‘.bz2’, ‘.xz’, or ‘.zip’ respectively, and no decompression otherwise. Set to None for no decompression.

Below is the implementation of the above method with some examples :



Example 1:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing packages 
import pandas as pd 
  
# dictionary of data 
dct = {'ID': {0: 23, 1: 43, 2: 12
            3: 13, 4: 67, 5: 89
            6: 90, 7: 56, 8: 34}, 
    'Name': {0: 'Ram', 1: 'Deep'
                2: 'Yash', 3: 'Aman'
                4: 'Arjun', 5: 'Aditya'
                6: 'Divya', 7: 'Chalsea'
                8: 'Akash' }, 
    'Marks': {0: 89, 1: 97, 2: 45, 3: 78
                4: 56, 5: 76, 6: 100, 7: 87
                8: 81}, 
    'Grade': {0: 'B', 1: 'A', 2: 'F', 3: 'C'
                4: 'E', 5: 'C', 6: 'A', 7: 'B'
                8: 'B'
    
  
# forming dataframe 
data = pd.DataFrame(dct) 
  
# using to_pickle function to form file 
# with name 'pickle_file' 
pd.to_pickle(data,'./pickle_file.pkl')
  
# unpickled the data by using the
# pd.read_pickle method
unpickled_data = pd.read_pickle("./pickle_file.pkl")
print(unpickled_data)

chevron_right


Output :

Example 2:

Python3

filter_none

edit
close

play_arrow

link
brightness_4
code

# importing packages 
import pandas as pd 
  
# dictionary of data 
dct = {"f1": range(6), "b1": range(6, 12)} 
  
# forming dataframe 
data = pd.DataFrame(dct) 
  
# using to_pickle function to form file 
# with name 'pickle_data' 
pd.to_pickle(data,'./pickle_data.pkl')
  
# unpickled the data by using the
# pd.read_pickle method
unpickled_data = pd.read_pickle("./pickle_data.pkl")
print(unpickled_data)

chevron_right


Output :

Attention geek! Strengthen your foundations with the Python Programming Foundation Course and learn the basics.

To begin with, your interview preparations Enhance your Data Structures concepts with the Python DS Course.

My Personal Notes arrow_drop_up
Recommended Articles
Page :